Sequences

We know that the functions can be defined on any subsets of *R*. As the set of positive integers Z_+ is a subset of *R*, we can define a function on it in the following manner. $f: Z_+ \rightarrow R$ $f(n) = a_n$

The range of this function is the infinite set $\{a_1, a_2, a_3, ...\}$. The set may not necessarily contain infinitely many distinct numbers because some of a_i 's could be equal. That set $\{a_1, a_2, a_3, ...\}$ is called a sequence. We call a_r the r^{th} term of the sequence.

For our convenience, we shall denote the whole sequence $\{a_1, a_2, ...\}$ by $\{a_n\}$.

Example 1

Consider the sequence $\{a_n\}$ defined as $a_n = \frac{1}{n}$.

Here, $a_1 = 1$ $a_2 = \frac{1}{2} = 0.5$ $a_3 = \frac{1}{3} = 0.333$ $a_4 = \frac{1}{4} = 0.25$

One can see that as *n* gets bigger a_n is getting closer to 0. For example, $a_{15} = 0.06667$ $a_{20} = 0.05000$

Because of the behaviour we have seen with the sequence $\{a_n\}$, we suspect that by taking n large enough, we can make a_n as close to 0 as we wish. Because a_{20} is within 0.05 units of 0 and a_{21} is within 0.04762 units of 0, we can expect that a_{22} will be even closer. These observations prepare us for our first definition.

<u>Definition 1</u> Let $\{a_n\}$ be a sequence. A number *L* is said to be the limit of $\{a_n\}$ if $\forall \varepsilon > 0, \exists n_0 \in Z_+$ such that $n > n_0 \Longrightarrow |a_n - L| < \varepsilon$ When this happens, we write $\lim_{n \to \infty} a_n = L$

Now, let us consider the sequence in example 1.

Let
$$\varepsilon > 0$$
. Then $\frac{1}{\varepsilon} \in R$.
By Archimedean property, $\exists n_0 \in Z_+$ such that $n_0 > \frac{1}{\varepsilon}$
 $n > n_0 \Rightarrow n > \frac{1}{\varepsilon} \Rightarrow \frac{1}{n} < \varepsilon$
 $\Rightarrow |a_n - 0| = \left|\frac{1}{n} - 0\right| < \varepsilon$
 $\vdots \lim_{t \to 0} a_t = 0$

 $\therefore \lim_{n \to \infty} a_n = 0$

Definition 2

A sequence $\{a_n\}$ is said to be convergent if $\exists L \in R$ such that $\lim_{n \to \infty} a_n = L$. Because we don't consider ∞ as a real number, this *L* is understood to be finite.

The sequence in the example 1 is convergent. Not all the sequences are convergent. When a sequence is not convergent, it is said to be divergent.

Example 2 $a_n = n$ Assume $\{a_n\}$ is convergent. Then $\exists L \in R$ such that $\lim_{n \to \infty} a_n = L$ Because $\frac{1}{2} > 0$, $\exists n_0 \in Z_+$ such that $|n - L| < \frac{1}{2} \forall n > n_0$ $\therefore |(n_0 + 1) - L| < \frac{1}{2}$ and $|(n_0 + 3) - L| < \frac{1}{2}$ $2 = |(n_0 + 3 - L) - (n_0 + 1 - L)|$ $\leq |n_0 + 3 - L| + |n_0 + 1 - L| < 1 -$ contradiction

 \therefore The sequence $\{a_n\}$ is divergent.

Theorem 1

A convergent sequence has a unique limit.

Proof: Suppose ∃ a convergent sequence {*a_n*} which doesn't have a unique limit. ∴ There are *L*, *M* ∈ *R* such that $L \neq M$, $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} a_n = M$. Then |L - M| > 0. ∃ $n_1 \in Z_+$ such that $n > n_1 \Longrightarrow |a_n - L| < \frac{|L - M|}{4}$ ∃ $n_2 \in Z_+$ such that $n > n_2 \Longrightarrow |a_n - M| < \frac{|L - M|}{4}$ Let n_0 be such that $n_0 > n_1$ and $n_0 > n_2$. Then $|L - M| = |L - a_{n_0} + a_{n_0} - M|$ $\leq |a_{n_0} - L| + |a_{n_0} - M|$ $< \frac{|L - M|}{4} + \frac{|L - M|}{4} = \frac{|L - M|}{2}$ - contradiction ∴The limit is unique.

<u>Theorem 2</u> Let $\{a_n\}, \{b_n\}$ be two sequences such that $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = M$. Then, $\lim_{n \to \infty} (a_n + b_n) = L + M$

$$\frac{\operatorname{Proof:} \operatorname{Let} \varepsilon > 0.}{\exists n_1 \in Z_+ \operatorname{such} \operatorname{that} n > n_1 \Longrightarrow |a_n - L| < \frac{\varepsilon}{2}} \\ \exists n_2 \in Z_+ \operatorname{such} \operatorname{that} n > n_2 \Longrightarrow |b_n - M| < \frac{\varepsilon}{2} \\ \operatorname{Let} n_0 = Max \{n_1, n_2\}. \\ n > n_0 \Longrightarrow |(a_n + b_n) - (L + M)| \le |a_n - L| + |b_n - M| \\ < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \\ \therefore \lim_{n \to \infty} (a_n + b_n) = L + M$$

Theorem 3

Let $\{a_n\}, \{b_n\}$ be 2 sequences such that $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = M$. Then the following claims are true.

i) $\lim_{n \to \infty} (ra_n) = rL \ \forall r \in R$

ii) $\lim_{n \to \infty} (a_n \, b_n) = LM$

iii)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M}$$
 provided that $M \neq 0$

The proof is an exercise for the student.

<u>Definition 3</u> Let $\{a_n\}$ be a sequence. i) If $a_n \le a_{n+1} \forall n$, then the sequence is said to be increasing.

ii) If $a_n \ge a_{n+1} \forall n$, then the sequence is said to be decreasing.

iii) If a sequence is either increasing or decreasing, then it is said to be a monotonic sequence.

If the strict inequalities are being used in i) or ii), then we say that the sequence is strictly increasing or strictly decreasing.

<u>Definition 4</u> Let $\{a_n\}$ be a sequence.

i) If $\exists A \in R$ such that $a_n \leq A \ \forall n$, then $\{a_n\}$ is said to be bounded above.

ii) If $\exists B \in R$ such that $a_n \geq B \forall n$, then $\{a_n\}$ is said to be bounded below.

iii) If there are $A, B \in R$ such that $B \le a_n \le A \forall n$, then $\{a_n\}$ is said to be bounded.

<u>Theorem 4</u> Every convergent sequence is bounded.

<u>Proof:</u> Let $\{a_n\}$ be a convergent sequence. Then $\exists L \in R$ such that $\lim_{n \to \infty} a_n = L$

 $\begin{array}{l} \therefore \exists n_0 \in Z_+ \text{ such that } n > n_0 \Longrightarrow |a_n - L| < 1 \Longrightarrow |a_n| < |L| + 1 \\ \text{Let } M = Max \left\{ |a_1|, |a_2|, ..., |a_{n_0}|, |L| + 1 \right\} \\ \text{Then } |a_n| \le M \ \forall n \\ \therefore -M \le a_n \le M \ \forall n \\ \therefore \{a_n\} \text{ is bounded.} \end{array}$

The student should realize that this theorem provides us with another way to make the claim we made in the example 2.

The converse of theorem 4 is false. Let $a_n = (-1)^n$ Then $-2 < a_n < 2 \quad \forall n$ It will be easy proving that the sequence $\{a_n\}$ is divergent.

Suppose a sequence $\{a_n\}$ is bounded above. Then from the completeness axiom (chapter 2), we can say that the supremum of $\{a_n | n \in Z_+\}$ exists. In the same way, if $\{a_n\}$ is bounded below, we can say that the infimum of $\{a_n | n \in Z_+\}$ exists.

<u>Theorem 5</u> If $\{a_n\}$ is increasing and bounded above, then $\lim_{n \to \infty} a_n = L$ where $L = \sup\{a_n | n \in Z_+\}$.

Proof is a tutorial exercise.

<u>Theorem 6</u> If $\{a_n\}$ is decreasing and bounded below, then $\lim_{n \to \infty} a_n = M$ where $M = \inf\{a_n | n \in Z_+\}$.

Proof is a tutorial exercise.

Example 3

 $b_n = 1 + \frac{1}{n}$ Clearly, $\{b_n\}$ is decreasing.

$$1 \leq b_n \ \forall n$$

So $\{b_n\}$ is bounded below.

The student should be able to prove that $1 = \inf\{b_n\}$

 \therefore From the above theorem,

 $\lim_{n\to\infty}b_n=1$

Cauchy Sequences

We know that in a convergent sequence the terms get closer and closer to its limit. It may also be possible to have a sequence whose terms get closer and closer together and, we should be able to explain the behaviour of those terms without even mentioning a limit. The following definition will explain such a behaviour.

Definition 5

A sequence $\{a_n\}$ is said to be a Cauchy sequence if and only if $\forall \epsilon > 0$, $\exists n_0 \in Z_+$ such that $m, n > n_0 \implies |a_m - a_n| < \epsilon$

If the terms are getting closer and closer together, one would expect those to get closer and closer to a limit. In other words, one would expect such a sequence to be convergent. That fact needs to be proven and we will devote the next two theorems for that purpose.

<u>Theorem 7</u> Every Cauchy sequence is bounded.

 $\begin{array}{l} \underline{\text{Proof:}} \ \text{Let} \left\{a_n\right\} \text{ be a Cauchy sequence.} \\ \exists n_0 \in Z_+ \text{ such that} \\ m,n > n_0 \Longrightarrow |a_m - a_n| < 1 \\ \therefore \ \forall \ m > n_0, |a_m - a_{n_0+1}| < 1 \\ \therefore \ m > n_0 \Longrightarrow |a_m| - |a_{n_0+1}| < 1 \\ \Longrightarrow |a_m| < |a_{n_0+1}| + 1 \end{array}$

Let $M = Max\{|a_1|, |a_2|, ..., |a_{n_0}|, |a_{n_0+1}| + 1\}$ Then $|a_m| < M \forall m \in Z_+$ $\therefore \{a_m\}$ is bounded.

Theorem 8 Let $\{a_n\}$ be a sequence. Then $\{a_n\}$ is convergent if and only if $\{a_n\}$ is a Cauchy sequence.

<u>Proof:</u> Suppose $\{a_n\}$ is convergent. Let $\varepsilon > 0$. Then $\exists n_0 \in Z_+$ such that

$$n > n_0 \Longrightarrow |a_n - L| < \frac{\varepsilon}{2}$$
 where L is the limit of $\{a_n\}$

Take *m*, *n* such that $m > n_0$, $n > n_0$. $|a_m - a_n| = |a_m - L + L - a_n|$ $\leq |a_m - L| + |a_n - L| < \varepsilon$ $\therefore \{a_n\}$ is a Cauchy sequence.

Proving the converse is not necessary for engineering students. Theorem 7 and some other material will be needed for that proof.

Because of this theorem, we can establish the convergence of a sequence without knowing the limit.

Example 4: Suppose there is a sequence with the property

$$a_{n+2} = \frac{a_n + a_{n+1}}{2} \quad \forall n \in Z_+$$

For this sequence,

$$a_{i+1} - a_i = \frac{a_{i-1} + a_i}{2} - a_i = \frac{a_{i-1} - a_i}{2}$$
$$= \frac{a_{i-1} - \left(\frac{a_{i-2} + a_{i-1}}{2}\right)}{2} = \frac{a_{i-1} - a_{i-2}}{2^2}$$

It follows that

 $|a_{i+1} - a_i| = \frac{|a_i - a_{i-1}|}{2} = \frac{|a_{i-1} - a_{i-2}|}{2^2}$

$$= \dots = \frac{|a_2 - a_1|}{2^{i-1}}$$

If m = n, then $|a_m - a_n| = 0$

So, without loss of generality, take m > n.

$$a_{m} - a_{n} = \sum_{\substack{i=n \ m-1}}^{m-1} (a_{i+1} - a_{i}) \Longrightarrow$$
$$|a_{m} - a_{n}| \le \sum_{\substack{i=n \ m-1}}^{m-1} |a_{i+1} - a_{i}|$$
$$= |a_{2} - a_{1}| \sum_{\substack{i=n \ n-1}}^{m-1} \left(\frac{1}{2}\right)^{i-1} < |a_{2} - a_{1}| \left(\frac{1}{2}\right)^{n-2}$$

Let $\varepsilon > 0$. If $a_2 = a_1$, then $|a_m - a_n| < \varepsilon$ So let $a_2 \neq a_1$ Choose n_0 such that

$$2^{n_0-2} > \frac{|a_2 - a_1|}{\varepsilon}$$

$$n > n_0 \Longrightarrow 2^{n-2} > \frac{|a_2 - a_1|}{\varepsilon} \Longrightarrow$$

$$\frac{|a_2 - a_1|}{2^{n-2}} < \varepsilon \Longrightarrow |a_m - a_n| < \varepsilon$$

 \therefore {*a_n*} is a Cauchy sequence.

Hence, $\{a_n\}$ is convergent.

Note that we were able to establish the convergence without knowing the limit.

U. A. Senevirathne Dept. of Mathematics University of Moratuwa.