Sequences

We know that the functions can be defined on any subsets of R. As the set of positive integers Z_{+}is a subset of R, we can define a function on it in the following manner.
$f: Z_{+} \rightarrow R$
$f(n)=a_{n}$
The range of this function is the infinite set $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. The set may not necessarily contain infinitely many distinct numbers because some of $a_{i}{ }^{\prime}$'s could be equal. That set $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is called a sequence. We call a_{r} the $r^{t h}$ term of the sequence.

For our convenience, we shall denote the whole sequence $\left\{a_{1}, a_{2}, \ldots\right\}$ by $\left\{a_{n}\right\}$.

Example 1

Consider the sequence $\left\{a_{n}\right\}$ defined as $a_{n}=\frac{1}{n}$.
Here, $a_{1}=1$

$$
\begin{aligned}
& a_{2}=\frac{1}{2}=0.5 \\
& a_{3}=\frac{1}{3}=0.333 \\
& a_{4}=\frac{1}{4}=0.25
\end{aligned}
$$

One can see that as n gets bigger a_{n} is getting closer to 0 . For example, $a_{15}=0.06667$

$$
a_{20}=0.05000
$$

Because of the behaviour we have seen with the sequence $\left\{a_{n}\right\}$, we suspect that by taking n large enough, we can make a_{n} as close to 0 as we wish. Because a_{20} is within 0.05 units of 0 and a_{21} is within 0.04762 units of 0 , we can expect that a_{22} will be even closer. These observations prepare us for our first definition.

Definition 1

Let $\left\{a_{n}\right\}$ be a sequence. A number L is said to be the limit of $\left\{a_{n}\right\}$ if $\forall \varepsilon>0, \exists n_{0} \in Z_{+}$ such that $n>n_{0} \Rightarrow\left|a_{n}-L\right|<\varepsilon$
When this happens, we write $\lim _{n \rightarrow \infty} a_{n}=L$
Now, let us consider the sequence in example 1.
Let $\varepsilon>0$.Then $\frac{1}{\varepsilon} \in R$.
By Archimedean property, $\exists n_{0} \in Z_{+}$such that $n_{0}>\frac{1}{\varepsilon}$

$$
\begin{aligned}
n>n_{0} & \Rightarrow n>\frac{1}{\varepsilon} \Rightarrow \frac{1}{n}<\varepsilon \\
& \Rightarrow\left|a_{n}-0\right|=\left|\frac{1}{n}-0\right|<\varepsilon
\end{aligned}
$$

$\therefore \lim _{n \rightarrow \infty} a_{n}=0$

Definition 2

A sequence $\left\{a_{n}\right\}$ is said to be convergent if $\exists L \in R$ such that $\lim _{n \rightarrow \infty} a_{n}=L$. Because we don't consider ∞ as a real number, this L is understood to be finite.

The sequence in the example 1 is convergent. Not all the sequences are convergent. When a sequence is not convergent, it is said to be divergent.

Example 2 $a_{n}=n$
Assume $\left\{a_{n}\right\}$ is convergent. Then $\exists L \in R$ such that $\lim _{n \rightarrow \infty} a_{n}=L$
Because $\frac{1}{2}>0, \exists n_{0} \in Z_{+}$such that
$|n-L|<\frac{1}{2} \forall n>n_{0}$
$\therefore\left|\left(n_{0}+1\right)-L\right|<\frac{1}{2}$ and $\left|\left(n_{0}+3\right)-L\right|<\frac{1}{2}$
$2=\left|\left(n_{0}+3-L\right)-\left(n_{0}+1-L\right)\right|$
$\leq\left|n_{0}+3-L\right|+\left|n_{0}+1-L\right|<1-$ contradiction
\therefore The sequence $\left\{a_{n}\right\}$ is divergent.

Theorem 1

A convergent sequence has a unique limit.

Proof: Suppose \exists a convergent sequence $\left\{a_{n}\right\}$ which doesn't have a unique limit.
\therefore There are $L, M \in R$ such that $L \neq M, \lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} a_{n}=M$.
Then $|L-M|>0$.
$\exists n_{1} \in Z_{+}$such that $n>n_{1} \Rightarrow\left|a_{n}-L\right|<\frac{|L-M|}{4}$
$\exists n_{2} \in Z_{+}$such that $n>n_{2} \Rightarrow\left|a_{n}-M\right|<\frac{|L-M|}{4}$
Let n_{0} be such that $n_{0}>n_{1}$ and $n_{0}>n_{2}$.
Then $|L-M|=\left|L-a_{n_{0}}+a_{n_{0}}-M\right|$

$$
\begin{aligned}
& \leq\left|a_{n_{0}}-L\right|+\left|a_{n_{0}}-M\right| \\
& <\frac{|L-M|}{4}+\frac{|L-M|}{4}=\frac{|L-M|}{2} \text { - contradiction }
\end{aligned}
$$

\therefore The limit is unique.

Theorem 2

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be two sequences such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$.
Then, $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M$

Proof: Let $\varepsilon>0$.
$\exists n_{1} \in Z_{+}$such that $n>n_{1} \Rightarrow\left|a_{n}-L\right|<\frac{\varepsilon}{2}$
$\exists n_{2} \in Z_{+}$such that $n>n_{2} \Rightarrow\left|b_{n}-M\right|<\frac{\varepsilon}{2}$
Let $n_{0}=\operatorname{Max}\left\{n_{1}, n_{2}\right\}$.
$n>n_{0} \Rightarrow\left|\left(a_{n}+b_{n}\right)-(L+M)\right| \leq\left|a_{n}-L\right|+\left|b_{n}-M\right|$

$$
<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

$\therefore \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M$

Theorem 3

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be 2 sequences such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$.
Then the following claims are true.
i) $\lim _{n \rightarrow \infty}\left(r a_{n}\right)=r L \forall r \in R$
ii) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L M$
iii) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M}$ provided that $M \neq 0$

The proof is an exercise for the student.
Definition 3 Let $\left\{a_{n}\right\}$ be a sequence.
i) If $a_{n} \leq a_{n+1} \forall n$, then the sequence is said to be increasing.
ii) If $a_{n} \geq a_{n+1} \forall n$, then the sequence is said to be decreasing.
iii) If a sequence is either increasing or decreasing, then it is said to be a monotonic sequence.

If the strict inequalities are being used in i) or ii), then we say that the sequence is strictly increasing or strictly decreasing.

Definition 4 Let $\left\{a_{n}\right\}$ be a sequence.
i) If $\exists A \in R$ such that $a_{n} \leq A \forall n$, then $\left\{a_{n}\right\}$ is said to be bounded above.
ii) If $\exists B \in R$ such that $a_{n} \geq B \forall n$, then $\left\{a_{n}\right\}$ is said to be bounded below.
iii) If there are $A, B \in R$ such that $B \leq a_{n} \leq A \forall n$, then $\left\{a_{n}\right\}$ is said to be bounded.

Theorem 4 Every convergent sequence is bounded.
Proof: Let $\left\{a_{n}\right\}$ be a convergent sequence. Then $\exists L \in R$ such that $\lim _{n \rightarrow \infty} a_{n}=L$
$\therefore \exists n_{0} \in Z_{+}$such that $n>n_{0} \Rightarrow\left|a_{n}-L\right|<1 \Rightarrow\left|a_{n}\right|<|L|+1$
Let $M=\operatorname{Max}\left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots .,\left|a_{n_{0}}\right|,|L|+1\right\}$
Then $\left|a_{n}\right| \leq M \quad \forall n$
$\therefore-M \leq a_{n} \leq M \quad \forall n$
$\therefore\left\{a_{n}\right\}$ is bounded.

The student should realize that this theorem provides us with another way to make the claim we made in the example 2.

The converse of theorem 4 is false.
Let $a_{n}=(-1)^{n}$
Then $-2<a_{n}<2 \quad \forall n$
It will be easy proving that the sequence $\left\{a_{n}\right\}$ is divergent.
Suppose a sequence $\left\{a_{n}\right\}$ is bounded above. Then from the completeness axiom (chapter 2), we can say that the supremum of $\left\{a_{n} \mid n \in Z_{+}\right\}$exists. In the same way, if $\left\{a_{n}\right\}$ is bounded below, we can say that the infimum of $\left\{a_{n} \mid n \in Z_{+}\right\}$exists.

Theorem 5 If $\left\{a_{n}\right\}$ is increasing and bounded above, then $\lim _{n \rightarrow \infty} a_{n}=L$ where $L=\sup \left\{a_{n} \mid n \in Z_{+}\right\}$.

Proof is a tutorial exercise.

Theorem 6 If $\left\{a_{n}\right\}$ is decreasing and bounded below, then $\lim _{n \rightarrow \infty} a_{n}=M$ where $M=\inf \left\{a_{n} \mid n \in Z_{+}\right\}$.

Proof is a tutorial exercise.
Example 3
$b_{n}=1+\frac{1}{n}$
Clearly, $\left\{b_{n}\right\}$ is decreasing.

$$
1 \leq b_{n} \forall n
$$

So $\left\{b_{n}\right\}$ is bounded below.
The student should be able to prove that $1=\inf \left\{b_{n}\right\}$
\therefore From the above theorem,

$$
\lim _{n \rightarrow \infty} b_{n}=1
$$

Cauchy Sequences

We know that in a convergent sequence the terms get closer and closer to its limit. It may also be possible to have a sequence whose terms get closer and closer together and, we should be able to explain the behaviour of those terms without even mentioning a limit. The following definition will explain such a behaviour.

Definition 5

A sequence $\left\{a_{n}\right\}$ is said to be a Cauchy sequence if and only if $\forall \varepsilon>0, \exists n_{0} \in Z_{+}$such that $m, n>n_{0} \Rightarrow\left|a_{m}-a_{n}\right|<\varepsilon$

If the terms are getting closer and closer together, one would expect those to get closer and closer to a limit. In other words, one would expect such a sequence to be convergent. That fact needs to be proven and we will devote the next two theorems for that purpose.

Theorem 7

Every Cauchy sequence is bounded.
Proof: Let $\left\{a_{n}\right\}$ be a Cauchy sequence.
$\exists n_{0} \in Z_{+}$such that
$m, n>n_{0} \Rightarrow\left|a_{m}-a_{n}\right|<1$
$\therefore \forall m>n_{0},\left|a_{m}-a_{n_{0}+1}\right|<1$
$\therefore m>n_{0} \Rightarrow\left|a_{m}\right|-\left|a_{n_{0}+1}\right|<1$
$\Rightarrow\left|a_{m}\right|<\left|a_{n_{0}+1}\right|+1$
Let $M=\operatorname{Max}\left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots \ldots . .,\left|a_{n_{0}}\right|,\left|a_{n_{0}+1}\right|+1\right\}$
Then $\left|a_{m}\right|<M \forall m \in Z_{+}$
$\therefore\left\{a_{m}\right\}$ is bounded.
Theorem 8 Let $\left\{a_{n}\right\}$ be a sequence. Then $\left\{a_{n}\right\}$ is convergent if and only if $\left\{a_{n}\right\}$ is a Cauchy sequence.

Proof: Suppose $\left\{a_{n}\right\}$ is convergent.
Let $\varepsilon>0$. Then $\exists n_{0} \in Z_{+}$such that
$n>n_{0} \Rightarrow\left|a_{n}-L\right|<\frac{\varepsilon}{2}$ where L is the limit of $\left\{a_{n}\right\}$.
Take m, n such that $m>n_{0}, n>n_{0}$.
$\left|a_{m}-a_{n}\right|=\left|a_{m}-L+L-a_{n}\right|$

$$
\leq\left|a_{m}-L\right|+\left|a_{n}-L\right|<\varepsilon
$$

$\therefore\left\{a_{n}\right\}$ is a Cauchy sequence.
Proving the converse is not necessary for engineering students.
Theorem 7 and some other material will be needed for that proof.
Because of this theorem, we can establish the convergence of a sequence without knowing the limit.

Example 4: Suppose there is a sequence with the property
$a_{n+2}=\frac{a_{n}+a_{n+1}}{2} \quad \forall n \in Z_{+}$
For this sequence,

$$
\begin{aligned}
a_{i+1}-a_{i} & =\frac{a_{i-1}+a_{i}}{2}-a_{i}=\frac{a_{i-1}-a_{i}}{2} \\
& =\frac{a_{i-1}-\left(\frac{a_{i-2}+a_{i-1}}{2}\right)}{2}=\frac{a_{i-1}-a_{i-2}}{2^{2}}
\end{aligned}
$$

It follows that
$\left|a_{i+1}-a_{i}\right|=\frac{\left|a_{i}-a_{i-1}\right|}{2}=\frac{\left|a_{i-1}-a_{i-2}\right|}{2^{2}}$

$$
=\ldots \ldots \ldots \ldots=\frac{\left|a_{2}-a_{1}\right|}{2^{i-1}}
$$

If $m=n$, then $\left|a_{m}-a_{n}\right|=0$
So, without loss of generality, take $m>n$.
$a_{m}-a_{n}=\sum_{i=n}^{m-1}\left(a_{i+1}-a_{i}\right) \Rightarrow$
$\left|a_{m}-a_{n}\right| \leq \sum_{i=n}^{m-1}\left|a_{i+1}-a_{i}\right|$
$=\left|a_{2}-a_{1}\right| \sum_{i=n}^{m-1}\left(\frac{1}{2}\right)^{i-1}<\left|a_{2}-a_{1}\right|\left(\frac{1}{2}\right)^{n-2}$
Let $\varepsilon>0$.
If $a_{2}=a_{1}$, then $\left|a_{m}-a_{n}\right|<\varepsilon$
So let $a_{2} \neq a_{1}$
Choose n_{0} such that
$2^{n_{0}-2}>\frac{\left|a_{2}-a_{1}\right|}{\varepsilon}$
$n>n_{0} \Rightarrow 2^{n-2}>\frac{\left|a_{2}-a_{1}\right|}{\varepsilon} \Rightarrow$
$\frac{\left|a_{2}-a_{1}\right|}{2^{n-2}}<\varepsilon \Rightarrow\left|a_{m}-a_{n}\right|<\varepsilon$
$\therefore\left\{a_{n}\right\}$ is a Cauchy sequence.
Hence, $\left\{a_{n}\right\}$ is convergent.

Note that we were able to establish the convergence without knowing the limit.
U. A. Senevirathne

Dept. of Mathematics
University of Moratuwa.

