
1 
 

Sequences 

We know that the functions can be defined on any subsets of 𝑅. As the set of positive integers 

𝑍+ is a subset of 𝑅, we can define a function on it in the following manner. 

𝑓: 𝑍+ → 𝑅  

𝑓(𝑛) = 𝑎𝑛  
 

The range of this function is the infinite set {𝑎1, 𝑎2, 𝑎3, … }. The set may not necessarily contain 

infinitely many distinct numbers because some of 𝑎𝑖
′s could be equal. That set {𝑎1, 𝑎2, 𝑎3, … } 

is called a sequence. We call 𝑎𝑟 the 𝑟𝑡ℎ term of the sequence. 

 

For our convenience, we shall denote the whole sequence {𝑎1, 𝑎2, … } by {𝑎𝑛}. 

 

Example 1 

Consider the sequence  {𝑎𝑛} defined as  𝑎𝑛 =
1
𝑛

. 

Here,  𝑎1 =  1 

            𝑎2 =  
1

2
 = 0.5 

            𝑎3 =  
1

3
 = 0.333 

            𝑎4 =  
1

4
 = 0.25 

 

One can see that as 𝑛 gets bigger  𝑎𝑛 is getting closer to 0. For example,   𝑎15  =  0.06667  

                                                                                                 𝑎20  =  0.05000   
Because of the behaviour we have seen with the sequence {𝑎𝑛}, we suspect that by taking n 

large enough, we can make 𝑎𝑛 as close to 0 as we wish. Because  𝑎20 is within 0.05 units of 0 

and 𝑎21 is within 0.04762 units of 0, we can expect that  𝑎22 will be even closer. These 

observations prepare us for our first definition. 

 

Definition 1 

Let {𝑎𝑛} be a sequence. 𝐴 number 𝐿 is said to be the limit of  {𝑎𝑛} if   ∀ 𝜀 > 0, ∃ 𝑛0 ∈ 𝑍+ 

such that  𝑛 > 𝑛0 ⟹ |𝑎𝑛 − 𝐿| < 𝜀 

When this happens, we write lim
𝑛→∞

𝑎𝑛 = 𝐿 

 

Now, let us consider the sequence in example 1. 

Let 𝜀 > 0.Then 
1

𝜀
∈ 𝑅. 

By Archimedean property, ∃ 𝑛0 ∈ 𝑍+ such that 𝑛0 >
1
𝜀
 

𝑛 > 𝑛0 ⟹  𝑛 >  
1

𝜀
 ⟹  

1

𝑛
 <  𝜀 

              ⟹  |𝑎𝑛 − 0|  =  |
1

𝑛
− 0|  <  𝜀 

 
∴ lim

𝑛→∞
𝑎𝑛 = 0  
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Definition 2 

A sequence {𝑎𝑛} is said to be convergent if ∃ 𝐿 ∈ 𝑅 such that lim
𝑛→∞

𝑎𝑛 = 𝐿. Because we don’t 

consider ∞ as a real number, this 𝐿 is understood to be finite. 

 

The sequence in the example 1 is convergent. Not all the sequences are convergent. When a 

sequence is not convergent, it is said to be divergent. 

 

Example 2 𝑎𝑛 = 𝑛  
Assume {𝑎𝑛} is convergent. Then ∃ 𝐿 ∈ 𝑅 such that  lim

𝑛→∞
𝑎𝑛 = 𝐿   

Because  
1

2
> 0, ∃𝑛0 ∈ 𝑍+such that 

|𝑛 − 𝐿| <  
1

2
  ∀ 𝑛 > 𝑛0 

∴ |(𝑛0 + 1) − 𝐿| <
1

2
  and |(𝑛0 + 3) − 𝐿| <

1

2
 

2 = |(𝑛0 + 3 − 𝐿) − (𝑛0 + 1 − 𝐿)| 

    ≤ |𝑛0 + 3 − 𝐿| + |𝑛0 + 1 − 𝐿| < 1 – contradiction  

 

∴The sequence {𝑎𝑛} is divergent. 

 

Theorem 1 

A convergent sequence has a unique limit. 

 

Proof: Suppose ∃ a convergent sequence {𝑎𝑛} which doesn’t have a unique limit. 

∴ There are 𝐿, 𝑀 ∈ 𝑅 such that 𝐿 ≠ 𝑀,  lim
𝑛→∞

𝑎𝑛 = 𝐿   and   lim
𝑛→∞

𝑎𝑛 = 𝑀. 

Then |𝐿 − 𝑀| > 0. 

∃𝑛1 ∈ 𝑍+ such that  𝑛 > 𝑛1 ⟹ |𝑎𝑛 − 𝐿| < 
|𝐿 − 𝑀|

4
 

∃𝑛2 ∈ 𝑍+  such that   𝑛 > 𝑛2 ⟹ |𝑎𝑛 − 𝑀| < 
|𝐿 − 𝑀|

4
 

Let 𝑛0 be such that 𝑛0 > 𝑛1 and 𝑛0 > 𝑛2. 

Then |𝐿 − 𝑀| = |𝐿 − 𝑎𝑛0
+ 𝑎𝑛0

− 𝑀|  

                          ≤ |𝑎𝑛0
− 𝐿| + |𝑎𝑛0

− 𝑀|  

                          <
|𝐿 − 𝑀|

4
+

|𝐿 − 𝑀|

4
=

|𝐿 − 𝑀|

2
  - contradiction 

∴The limit is unique. 

 

 

 

Theorem 2 

Let {𝑎𝑛}, {𝑏𝑛} be two sequences such that lim
𝑛→∞

𝑎𝑛 = 𝐿  and lim
𝑛→∞

𝑏𝑛 = 𝑀. 

Then, lim
        𝑛→∞

(𝑎𝑛 + 𝑏𝑛) = 𝐿 + 𝑀  
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Proof: Let 𝜀 > 0. 

∃ 𝑛1 ∈ 𝑍+ such that  𝑛 > 𝑛1 ⟹ |𝑎𝑛 − 𝐿| <
𝜀

2
 

∃ 𝑛2 ∈ 𝑍+ such that   𝑛 > 𝑛2 ⟹ |𝑏𝑛 − 𝑀| <
𝜀

2
 

Let 𝑛0 = 𝑀𝑎𝑥 {𝑛1, 𝑛2}. 
 

𝑛 > 𝑛0 ⟹  |(𝑎𝑛 + 𝑏𝑛) − (𝐿 + 𝑀)| ≤ |𝑎𝑛 − 𝐿| + |𝑏𝑛 − 𝑀|   

                                                                  <  
𝜀

2
+

𝜀

2
= 𝜀 

∴ lim
𝑛→∞

(𝑎𝑛 + 𝑏𝑛) = 𝐿 + 𝑀  

 

Theorem 3 

Let {𝑎𝑛}, {𝑏𝑛} be 2 sequences such that lim
𝑛→∞

𝑎𝑛 = 𝐿 and  lim
𝑛→∞

𝑏𝑛 = 𝑀.   

Then the following claims are true.  

i) lim
           𝑛→∞

(𝑟𝑎𝑛) = 𝑟𝐿  ∀𝑟 ∈ 𝑅  

 

ii)    lim
𝑛→∞

(𝑎𝑛 𝑏𝑛) = 𝐿𝑀 

 

iii) lim
𝑛→∞

𝑎𝑛

𝑏𝑛
=

𝐿

𝑀
  provided that 𝑀 ≠ 0 

 

The proof is an exercise for the student.  

 

Definition 3  Let {𝑎𝑛} be a sequence. 

i) If 𝑎𝑛 ≤  𝑎𝑛+1  ∀𝑛, then the sequence is said to be increasing. 
 
ii) If 𝑎𝑛 ≥  𝑎𝑛+1  ∀𝑛, then the sequence is said to be decreasing. 
 
iii) If a sequence is either increasing or decreasing, then it is said to be a monotonic sequence. 

 

If the strict inequalities are being used in i) or ii), then we say that the sequence is strictly 

increasing or strictly decreasing. 

 

Definition 4 Let {𝑎𝑛} be a sequence. 

i)  If ∃𝐴 ∈ 𝑅 such that 𝑎𝑛 ≤  𝐴  ∀𝑛, then {𝑎𝑛} is said to be bounded above.  

ii)  If ∃𝐵 ∈ 𝑅 such that 𝑎𝑛 ≥  𝐵  ∀𝑛, then {𝑎𝑛} is said to be bounded below. 

iii) If there are 𝐴, 𝐵 ∈ 𝑅 such that 𝐵 ≤ 𝑎𝑛 ≤ 𝐴  ∀𝑛, then {𝑎𝑛} is said to be bounded. 

 

Theorem 4 Every convergent sequence is bounded. 

 

Proof: Let {𝑎𝑛}  be a convergent sequence. Then ∃𝐿 ∈ 𝑅 such that lim
𝑛→∞

𝑎𝑛 = 𝐿 

∴ ∃𝑛0 ∈ 𝑍+ such that  𝑛 > 𝑛0 ⟹ |𝑎𝑛 − 𝐿| < 1 ⟹ |𝑎𝑛| < |𝐿| + 1 

Let 𝑀 = 𝑀𝑎𝑥 {|𝑎1|, |𝑎2|,…., |𝑎𝑛0
|, |𝐿| + 1} 

Then |𝑎𝑛| ≤ 𝑀  ∀𝑛 

∴ −𝑀 ≤ 𝑎𝑛 ≤ 𝑀   ∀𝑛 

∴ {𝑎𝑛} is bounded. 
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The student should realize that this theorem provides us with another way to make the claim 

we made in the example 2.  

 

The converse of theorem 4 is false.  

Let 𝑎𝑛 =  (−1)𝑛   

Then −2 < 𝑎𝑛 < 2   ∀𝑛 

It will be easy proving that the sequence {𝑎𝑛} is divergent. 

 

Suppose a sequence {𝑎𝑛} is bounded above. Then from the completeness axiom (chapter 2), 

we can say that the supremum of {𝑎𝑛| 𝑛 ∈ 𝑍+} exists. In the same way, if {𝑎𝑛} is bounded 

below, we can say that the infimum of {𝑎𝑛| 𝑛 ∈ 𝑍+} exists. 

 

Theorem 5  If {𝑎𝑛} is increasing and bounded above, then lim
𝑛→∞

𝑎𝑛 = 𝐿 where  

𝐿 = sup{𝑎𝑛|𝑛 ∈ 𝑍+}. 

 

Proof is a tutorial exercise. 

 

 

Theorem 6 If {𝑎𝑛} is decreasing and bounded below, then lim
𝑛→∞

𝑎𝑛 = 𝑀 where 

𝑀 = inf{𝑎𝑛| 𝑛 ∈ 𝑍+}. 
 

Proof is a tutorial exercise.  

 

Example 3   

𝑏𝑛 =  1 +
1

𝑛
 

Clearly, {𝑏𝑛} is decreasing. 

 1 ≤ 𝑏𝑛  ∀𝑛 

So {𝑏𝑛} is bounded below. 

The student should be able to prove that 1 = inf{𝑏𝑛} 

∴ From the above theorem, 

 lim
𝑛→∞

𝑏𝑛 = 1 

 

Cauchy Sequences 

We know that in a convergent sequence the terms get closer and closer to its limit. It may also 

be possible to have a sequence whose terms get closer and closer together and, we should be 

able to explain the behaviour of those terms without even mentioning a limit. The following 

definition will explain such a behaviour. 

 

Definition 5 

A sequence {𝑎𝑛} is said to be a Cauchy sequence if and only if ∀ 𝜀 > 0 , ∃ 𝑛0 ∈ 𝑍+ such that 

𝑚, 𝑛 > 𝑛0 ⟹ |𝑎𝑚 − 𝑎𝑛| < 𝜀 
 

If the terms are getting closer and closer together, one would expect those to get closer and 

closer to a limit. In other words, one would expect such a sequence to be convergent. That fact 

needs to be proven and we will devote the next two theorems for that purpose. 
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Theorem 7 

Every Cauchy sequence is bounded. 

 

Proof:  Let {𝑎𝑛} be a Cauchy sequence. 

∃𝑛0 ∈ 𝑍+ such that      

𝑚, 𝑛 > 𝑛0 ⟹ |𝑎𝑚 − 𝑎𝑛| < 1 
∴ ∀ 𝑚 > 𝑛0, |𝑎𝑚 − 𝑎𝑛0+1| < 1 

∴  𝑚 > 𝑛0 ⟹ |𝑎𝑚| − |𝑎𝑛0+1| < 1 

                     ⟹ |𝑎𝑚| < |𝑎𝑛0+1| + 1 

 

Let 𝑀 = Max{|𝑎1|, |𝑎2|,…….,|𝑎𝑛0
|, |𝑎𝑛0+1| + 1} 

Then |𝑎𝑚| < 𝑀  ∀ 𝑚 ∈ 𝑍+ 

∴  {𝑎𝑚} is bounded. 

 

Theorem 8 Let {𝑎𝑛} be a sequence. Then {𝑎𝑛} is convergent if and only if {𝑎𝑛} is a Cauchy 

sequence. 

 

Proof:  Suppose {𝑎𝑛} is convergent.  

Let 𝜀 > 0. Then ∃𝑛0 ∈ 𝑍+ such that 

𝑛 > 𝑛0 ⟹ |𝑎𝑛 − 𝐿| <
𝜀

2
 where 𝐿 is the limit of {𝑎𝑛}. 

Take 𝑚, 𝑛 such that 𝑚 > 𝑛0 , 𝑛 > 𝑛0. 
|𝑎𝑚 − 𝑎𝑛|  = |𝑎𝑚 − 𝐿 + 𝐿 − 𝑎𝑛| 
        ≤ |𝑎𝑚 − 𝐿| + |𝑎𝑛 − 𝐿| < 𝜀 

∴ {𝑎𝑛} is a Cauchy sequence. 

 

Proving the converse is not necessary for engineering students. 

Theorem 7 and some other material will be needed for that proof. 

  

Because of this theorem, we can establish the convergence of a sequence without knowing the 

limit. 

 

Example 4: Suppose there is a sequence with the property 

𝑎𝑛+2 =
𝑎𝑛 + 𝑎𝑛+1

2
    ∀𝑛 ∈ 𝑍+ 

 

For this sequence, 

𝑎𝑖+1 − 𝑎𝑖 =
𝑎𝑖−1 + 𝑎𝑖

2
− 𝑎𝑖 =

𝑎𝑖−1 − 𝑎𝑖

2
 

                  =
𝑎𝑖−1 − (

𝑎𝑖−2 + 𝑎𝑖−1

2 )

2
=

𝑎𝑖−1 − 𝑎𝑖−2

22
 

 

It follows that 

|𝑎𝑖+1 − 𝑎𝑖| =  
|𝑎𝑖 − 𝑎𝑖−1|

2
=

|𝑎𝑖−1 − 𝑎𝑖−2|

22
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                     =  ………… =
|𝑎2 − 𝑎1|

2𝑖−1
 

 

If 𝑚 = 𝑛, then |𝑎𝑚 − 𝑎𝑛| = 0 

 

So, without loss of generality, take 𝑚 > 𝑛. 

𝑎𝑚 − 𝑎𝑛    = ∑ (𝑎𝑖+1 − 𝑎𝑖) ⟹

𝑚−1

𝑖=𝑛

 

|𝑎𝑚 − 𝑎𝑛| ≤ ∑ |𝑎𝑖+1 − 𝑎𝑖| 

𝑚−1

𝑖=𝑛

 

 

= |𝑎2 − 𝑎1| ∑ (
1

2
)

𝑖−1

<  |𝑎2 − 𝑎1| (
1

2
)

𝑛−2𝑚−1

𝑖=𝑛

 

 

Let 𝜀 > 0. 

If 𝑎2 = 𝑎1, then |𝑎𝑚 − 𝑎𝑛| < 𝜀  

So let 𝑎2 ≠ 𝑎1 

Choose 𝑛0 such that 

2𝑛0−2 >
|𝑎2 − 𝑎1|

𝜀
 

𝑛 > 𝑛0 ⟹ 2𝑛−2 >
|𝑎2 − 𝑎1|

𝜀
⟹ 

|𝑎2 − 𝑎1|

2𝑛−2
< 𝜀 ⟹ |𝑎𝑚 − 𝑎𝑛| < 𝜀 

 

∴ {𝑎𝑛} is a Cauchy sequence. 

 

Hence, {𝑎𝑛} is convergent. 

 

Note that we were able to establish the convergence without knowing the limit. 

 

 

U. A. Senevirathne 

Dept. of Mathematics  

University of Moratuwa. 
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