- Find $cos\theta$ where θ is the angle between: 1.
 - $u_1 = (1,3,-5,4)$ and $u_2 = (2,-3,4-1)$ in \mathbb{R}^4 . a.

b.
$$A = \begin{bmatrix} 9 & 8 & 7 \\ 1 & 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & 5 & 4 \\ 1 & 2 & 5 \end{bmatrix}$ where $\langle A, B \rangle tr(B^T A)$

- Find k so that u = (1,2,k,4) and v = (3,k,7,-4) in \mathbb{R}^4 are orthogonal. 2.
- Let W be the subspace of in \mathbb{R}^5 spanned by u = (1,2,3,-1,2) and v = (2,4,7,2,-1). Find a basis of the 3. orthogonal complement W^{\perp} of W.
- Suppose $\{u_1, u_2, ..., u_r\}$ is an orthogonal set of vectors. Then 4.

$$|| u_1 + u_2 + u_3 + \cdots + u_r ||^2 = || u_1 ||^2 + || u_2 ||^2 + \cdots + || u_r ||^2$$

Consider the subspace U spanned by the vectors 5.

$$v_1 = (1,1,1,1), v_2 = (1,1,2,4)$$
 and $v_3 = (1,2,-4,-3)$. Find

an orthonormal basis of U.

a. An orthogonal basis of U b. an orthogonal basis of U b. an orthogonal basis of H b. $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & 3 & 9 \end{bmatrix}$ Find the characteristic polynomial of $A = \begin{bmatrix} 9 & -1 & 5 & 7 \\ 8 & 3 & 2 & -4 \end{bmatrix}$ 6.

7. Find the minimal polynomial of the matrix
$$M = \begin{bmatrix} 8 & 3 & 2 & -4 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & -1 & 8 \end{bmatrix}$$

Find the characteristic polynomial of each of the following 8.

$$A = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 2 & 5 \\ 2 & 1 & 5 \end{bmatrix} \quad C = \begin{bmatrix} 2 & 5 & 1 & 1 \\ 1 & 4 & 2 & 2 \\ 0 & 0 & 6 & -5 \\ 0 & 0 & 2 & 3 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 3 & 3 & 4 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

9. Find the characteristic polynomial of each of the following linear operators.

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $f(x, y) = (3x + 5y, 2x - 7y)$.

 $A: V \to V$ defined by $A(f) = \frac{df}{dt}$, Where V is the space of functions with basis ii $S = \{sint, cost\}.$

10. Show that a matrix A and its transpose A^T have the same characteristic polynomial.

Let
$$A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$$

- Find all eigenvalues and corresponding eigenvectors. a.
- b. Find a nonsingular matrix P such that $D = P^{-1}AP$ is diagonal ,and P^{-1} .
- c. Find A^6 .

i

11. Let
$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$$

- a. Find a maximum set of *s* of linearly independent eigenvectors of *A*.
- Find the characteristic polynomial of *A*. b.
- Is A diagonalizable? If yes find P such that $D = P^{-1}AP$ is diagonal. c.

- 12. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (2x + y 2z, 2x + 3y 4z, x + y z). Find all eigenvalues of *T*, and find a basis of each eigenspace. Is *T* diagonalizable? If so , find the basis *s* of \mathbb{R}^3 that diagonalizes *T*, and find its diagonal representation *D*.
- 13. Prove the following are equivalent
 - i. The scalar λ is an eigenvalue of A
 - ii. The matrix $\lambda I A$ is singular.
 - iii. The scalar λ is a root of the characteric polynomial of *A*.

14. Let $B = \begin{bmatrix} 11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4 \end{bmatrix}$

- a. Find all eigenvalues of *B*
- b. Find a maximum set S of nonzero orthogonal eigenvectors of *B*.
- c. Find an orthogonal matrix *P* such that $D = P^{-1}BP$ is orthogonal.
- 15. Find the minimal polynomial of each matrices.

	Г4	1	0	0	ך0	F.2	7	Δ	0-		г2	5	0	0	ך0	
	0	4	1	0	0		2	0			0	2	0	0	0	
M =	: 0	0	4	0	0	$M' = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	2	1	1	A =	0	0	4	2	0	
	0	0	0	4	1		0	1			0	0	3	5	0	
	LO	0	0	0	4J	-0	0	-2	41		LO	0	0	0	₇]	

16 Consider the vectors

$$\underline{\nu}_1 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \underline{\nu}_2 = \begin{pmatrix} 1\\1\\3 \end{pmatrix}, \underline{\nu}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \underline{w}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \underline{w}_2 = \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \underline{w}_3 = \begin{pmatrix} 0\\1\\-1 \end{pmatrix}.$$

- (a) Show that each of the sets $B = \{\underline{v}_1, \underline{v}_2, \underline{v}_3\}$ and $\hat{B} = \{\underline{w}_1, \underline{w}_2, \underline{w}_3\}$ is a basis for \mathbb{R}^3 .
- (b) Write down the matrix A_T of the linear transformation T given by $(\underline{e}_1) = \underline{v}_1$, $T(\underline{e}_2) = \underline{v}_2$ and $T(\underline{e}_3) = \underline{v}_3$, where $\{\underline{e}_1, \underline{e}_2, \underline{e}_3\}$ is the standard basis of \mathbb{R}^3 . Express T(x) for $x = (x, y, z)^T$ as a vector in \mathbb{R}^3 in terms of x, y, z.
- (c) Write down the matrix A_S of the linear trans formation S given by $(\underline{v}_1) = \underline{e}_1$, $S(\underline{v}_2) = \underline{e}_2$, $S(\underline{v}_3) = \underline{e}_3$. What is the relationship between S and T?

17. (a) Let V be a subspace of \mathbb{R}^n . Explain what it means for a set of vectors in $\{\underbrace{v_1, v_2, ..., v_r}\}$ in V to be (i) linearly independent (ii) a spanning set for V (iii) a basis of V

Define the dimension of V.

Prove that if $\{\underline{v_1}, \underline{v_2}, ..., \underline{v_r}\}$ is a basis for V, then every vector \underline{v} in V can be expressed uniquely as a linear combination of $\underline{v_1}, \underline{v_2}, ..., \underline{v_r}$.

- (b) Let $\underline{u_1} = (1,1,1,2)$, $\underline{u_2} = (1,2,3,1)$ and $\underline{u_3} = (0,1,2,-1)$ be vectors in \mathbb{R}^4 and $U = span \{\underline{u_1}, \underline{u_2}, \underline{u_3}\}$.
 - (i) Find a basis for U. What is the dimension of U?
 - (ii) Determine which of the vectors $\underline{v_1} = (2,1,0,5)$ and $\underline{v_2} = (1,2,1,1)$ belong to U. For the case when $\underline{v_i} \in U$, i = 1,2, express $\underline{v_i}$ as a linear combination of the vectors of the basis for U.
 - (iii) Let $\underline{w_1} = (2,0,0,3)$ and $\underline{w_2} = (1,0,1,0)$ and $W = span\{\underline{w_1}, \underline{w_2}\}$. Find the bases and their dimensions for W and U + W.
 - (iv) Use the dimension theorem to find the dimension of $U \cap W$.
- 18. Define the following terms for a vector space V over a field F:
 - (i) an inner product space
 - (ii) norm of a vector in V
 - (ii) orthonormal vectors
 - (a) Consider $u = (x_1, x_2)$ and $v = (y_1, y_2)$ in \mathbb{R}^2 . For what values of k is $\langle u, v \rangle = x_1 y_1 - 3x_1 y_2 - 3x_2 y_1 + kx_2 y_2$ an inner product on \mathbb{R}^2 .
 - (b) Let $\{u_1, u_2, ..., u_r\}$ be an orthonormal set in V. Show that for any $v \in V$, the vector $w = v (v, u_1)u_1 ... (v, u_r)u_r$ is orthogonal to each of the u_i .
 - (c) Obtain an orthonormal basis for the subspace of R^4 generated by (1,1,1,1), (1,-1,0,0) and (0,0,1,-1) with respect to the standard inner product
- 19 (a) Let U and W be vector spaces over a field K.
 - (i) Explain what it means for $T: U \to W$ to be a linear transformation.
 - (ii) Define the Kernel, KerT and image, Im T of of T.
 - (iii) Show that T is one-one if and only if ker $T = \{\underline{0}\}$.
 - (b) Determine whether there is a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1,1) = (-1,0,1), T(1,0) = (3,2,1) and T(3,1) = (5,0,-2)

(c) Consider the basis
$$B = \{ \underline{v_1}, \underline{v_2}, \underline{v_3} \}$$
 for \mathbb{R}^3 ; where $\underline{v_1} = (1,1,0)$,
 $\underline{v_2} = (1,0,1)$ and $\underline{v_3} = (0,1,1)$.

Show that the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $T(v_1) = (2,1)$,

$$T(\underline{v_2}) = (1, -1) \text{ and } T(\underline{v_3}) = (0, 0) \text{ is}$$

 $T(x, y, z) = \left(\frac{3}{2}x + \frac{1}{2}y - \frac{1}{2}z, y - z\right).$

Find Kernel of T and image of T.

Verify the Rank -Nullity theorem.

(d) Determine whether the linear transformation $T: M_{2\times 2} \to \mathbb{R}$ defined by

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + b + c + d$$
 is one-one.

20 (a) Let A and B two square matrices. Show that AB and BA have same eigen values.

Consider the matrices
$$A = \begin{pmatrix} 6 & 4 \\ -1 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} -2 & 0 \\ 6 & 1 \end{pmatrix}$

(i)Compute AB and BA.

(ii) Find the eigen values of AB and hence deduce the eigenvalues of BA.

- (iii)Find the eigenvectors of AB and BA and show that although that matrices have same eigenvalues, their eigen vectors are not same.
- (iv)Determine which of them are diagonalizable.

(b) For the matrix
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & -6 \\ 2 & -2 & 3 \end{pmatrix}$$
 find P such that $P^{-1}AP$ is a diagonal matrix.

Hence compute A^2 and using the Cayley-Hamilton theorem find A^{-1} .

21 (a) Define a subspace
$$W$$
 of a vector space V .

Let *A* be a $m \times n$ matrix and $U = \{ \underline{x} \in \mathbb{R}^n | A\underline{x} = \underline{0} \}$. Show that *U* is a subspace of \mathbb{R}^n .

(b) Let
$$\underline{u}_1 = (1,1,1,2)$$
, $\underline{u}_2 = (1,2,3,1)$ and $\underline{u}_3 = (0,1,2,-1)$ be vectors in \mathbb{R}^4 and

 $U = \operatorname{span}\{\underline{u}_1, \underline{u}_2, \underline{u}_3\}.$

- (i) Find a basis for U. What is the dimension of U?
- (ii) Determine whether the vectors $\underline{v}_1 = (2,1,0,5)$ and $\underline{v}_2 = (1,2,1,1)$ belong to *U*. For the case when $\underline{v}_i \in U$, i = 1,2, express \underline{v}_i as a linear combination of the vectors of the basis for *U*.
- (iii) Let $\underline{w}_1 = (2,0,0,3), \underline{w}_2 = (1,0,1,0)$ and $W = \operatorname{span}\{\underline{w}_1, \underline{w}_2\}$. Find the bases and their dimensions of W and U + W.
- (iv) Use the dimension theorem to find the dimension of $U \cap W$.

22. (a) Given that
$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ are eigen vectors of the matrix

$$A = \begin{pmatrix} 1 & -2 & -6 \\ 2 & -5 & -6 \end{pmatrix}$$
 Find on invertible matrix *B* such that $B^{-1}AB$ is a

$$A = \begin{pmatrix} 2 & 5 & 6 \\ -2 & -2 & -3 \end{pmatrix}$$
. Find an invertible matrix *P* such that $P^{-1}AP$ is diagonal.

(b) Consider the matrix
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix}$$
.

(i) Find the minimum polynomial of *A*.

(i)
$$W = \{(a, b, c): a + b + c = 0, a, b, c \in \mathbb{R}\}, V = \mathbb{R}^3$$
.

(ii)
$$W = \{(a, b, c): a^2 + b^2 + c^2 \le 1, a, b, c \in \mathbb{R}\}, V = \mathbb{R}^3.$$

(iii)
$$W = \left\{ A: A^T = A, A = \left(a_{ij}\right)_{3\times 3} \right\}, V = \text{all } 3 \times 3 \text{ matrices.}$$

(*iv*)
$$W = \{A \in V : AT = TA, A = (a_{ij})_{3\times 3}\}$$
 where *T* is a given matrix.

 $V = all 3 \times 3$ matrices

(v)
$$W = \{f : f(7) = f(1)\}$$
, $V =$ all functions from \mathbb{R} to \mathbb{R} .

24. Explain why the matrix $C = \begin{pmatrix} 5 & 0 & 4 \\ a & -1 & b \\ 2 & 0 & 3 \end{pmatrix}$ can be diagonalized for any values of $a, b \in \mathbb{R}$.

25. Find the eigenvalues of the matrices

A = \$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 2 \$\end{pmatrix}\$ and \$B = \$\begin{pmatrix} -2 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \$\end{pmatrix}\$ and show that neither matrix can be diagonalized over the real numbers.
26. Let = \$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \$\end{pmatrix}\$. Find the characteristic polynomial and the minimum polynomial of the matrix.

27. Find the characteristic equation of the matrix = \$\begin{pmatrix} 3 & -1 & 2 \\ 5 & -3 & 5 \\ 1 & -1 & 2 \$\end{pmatrix}\$. Find the characteristic polynomial and the eigenvalues (which are integers) and corresponding eigenvectors of \$B\$. Find a basis of \$\mathbb{R}^3\$ consisting of eigenvectors of the matrix \$B\$. Find an invertible matrix \$P\$ and a diagonal matrix \$D\$ such that \$P^{-1}BP = D\$. Check your answer for \$P\$ by showing \$BP = PD\$. Then calculate \$P^{-1}\$ and check that \$P^{-1}BP = D\$.
28. Diagonalize the matrix \$A = \$\begin{pmatrix} 0 & 0 & -2 \\ 1 & 0 & 3 \$\end{pmatrix}\$. Describe the eigenspace of each eigenvalue.

29. Decide which of the given matrices is similar to a diagonal matrix and which is not. If the matrix is diagonalizable, find both the diagonal matrix and non-singular matrix *P* that diagonalizes it.

(i)	$\begin{pmatrix} 2 & -1 \\ 0 & 2 \end{pmatrix}$	(ii) ($\begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$	(iii)	$\begin{pmatrix} 2\\0\\0 \end{pmatrix}$	1 2 0	$\begin{pmatrix} 0\\0\\3 \end{pmatrix}$
(iv)	$\begin{pmatrix} -1 & 0 & 2 \\ 1 & 2 & 1 \\ 2 & 0 & -1 \end{pmatrix}$	(V) (2	$ \begin{array}{cccc} 2 & 0 & 1 \\ 3 & 3 & 3 \\ 1 & 0 & 2 \end{array} $	(vi)	$\begin{pmatrix} 3\\0\\0 \end{pmatrix}$	$\begin{array}{c} 11 \\ -4 \\ 0 \end{array}$	$\begin{pmatrix} 3\\ -3\\ 6 \end{pmatrix}$
(vii)	$\begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	(viii)	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -2 \\ 0 & 3 & 1 & 3 \\ 0 & -2 & 0 & -1 \end{pmatrix} $	(ix)	$\begin{pmatrix} 2\\0\\0\\0\\0 \end{pmatrix}$	0 -1 3 -2	$ \begin{array}{ccc} 0 & 0 \\ 0 & -2 \\ 2 & 3 \\ 0 & -1 \end{array} $

30. Find the minimum polynomial of each of the following matrices:

(i)
$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 8 & 9 & 9 \\ 3 & 2 & 3 \\ -9 & -9 & -10 \end{pmatrix}$ (iii) $\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & 0 & -2 \\ 0 & 3 & 2 & 3 \\ 0 & -2 & 0 & -1 \end{pmatrix}$

31. Find the minimum polynomials of the following matrices:

	/2	5	0	0	0\		/3	1	0	0	0\	
	0	2	0	0	0		0	3	0	0	0	
A =	0	0	4	2	0	B =	0	0	3	1	0	
	0	0	3	5	0		0	0	0	3	0	
	\0	0	0	0	7/		$\setminus 0$	0	0	0	3/	

32. For each of the following 2×2 matrices, find all eigenvalues and eigenspaces for each eigenvalue of each matrix; if possible, diagonalize the matrix:

(a)
$$\begin{pmatrix} 3 & 4 \\ -2 & -3 \end{pmatrix}$$
 (b) $\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$.

33. For each of the following 3×3 matrices, find all eigenvalues and eigenspaces for each eigenvalue of each matrix; if possible, diagonalize the matrix:

(a)
$$\begin{pmatrix} -2 & 9 & -6 \\ 1 & -2 & 0 \\ 3 & -9 & 5 \end{pmatrix}$$
 (b) $\begin{pmatrix} 2 & -1 & -1 \\ 0 & 3 & 2 \\ -1 & 1 & 2 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

34. Consider the matrix
$$A = \begin{pmatrix} -10 & 6 & 3 \\ -26 & 16 & 8 \\ 16 & -10 & -5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & -6 & 16 \\ 0 & 17 & 45 \\ 0 & -6 & 16 \end{pmatrix}$.

- (i) Show that A and B have the same eigenvalues.
- (ii) Reduce A and B to the same diagonal matrix.
- (iii) Explain why there is an invertible matrix R such that $R^{-1}AR = B$.

- 35. Find A^8 and B^8 , where A and B are the two matrices in problem 3.
- 36. Suppose that $\theta \in \mathbb{R}$ is not an integer multiple of . Show that the matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ does not have an eigenvector in \mathbb{R}^2 .
- 37. Consider the matrix = $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$, where $\theta \in \mathbb{R}$.
 - (i) Show that A has an eigenvector in \mathbb{R}^2 with eigenvalue 1.
 - (ii) Show that any vector $\underline{v} \in \mathbb{R}^2$ perpendicular to the eigenvector in part(a) must satisfy $A\underline{v} = -\underline{v}$.
- 38. Let $a \in \mathbb{R}$ be non-zero. Show that the matrix $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ cannot be diagonalized.
- 39. Find the minimum polynomials of each of the following matrices:

$$A = \begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix}, \quad B = \begin{pmatrix} \lambda & a & 0 \\ 0 & \lambda & a \\ 0 & 0 & \lambda \end{pmatrix}, \quad C = \begin{pmatrix} \lambda & a & 0 & 0 \\ 0 & \lambda & a & 0 \\ 0 & 0 & \lambda & a \\ 0 & 0 & 0 & \lambda \end{pmatrix}, \text{ where } a \neq 0.$$

40. Define a subspace W of a vector space V.

(a) Let A be an $m \times n$ matrix and $U = \{ \underline{x} \in \mathbb{R}^n \mid A \underline{x} = \underline{0} \}$. Show that U is a subspace of \mathbb{R}^n .

If $A = \begin{pmatrix} 1 & 2 & 1 & -1 \\ -3 & -6 & 0 & 6 \\ 1 & 2 & 2 & 0 \end{pmatrix}$, then show that the subspace $U = \{ \underline{x} \in \mathbb{R}^4 \mid A \underline{x} = \underline{0} \}$ is given by $U = \{ (2r - 2s, s, -r, r) \mid r, s \in \mathbb{R} \}.$

- (b) Show that the set of all polynomials of degree exactly 5 is not a subspace of P_5 , the vector space of all polynomials of degree less or equal 5.
- (c) Suppose that U and W are subspaces of a vector space V. Define the sum V = U + W and the direct sum $V = U \oplus W$.

Let $W_1 = \{(a, b, 0, 0) \mid a, b \in \mathsf{R}\}$ and $W_2 = \{(0, 0, c, d) \mid c, d \in \mathsf{R}\}$ are two subspaces of R^4 . Show that $\mathsf{R}^4 = W_1 \oplus W_2$.

- 41. (a) Let V be a subspace of \mathbb{R}^n . Explain what it means for a set of vectors in $\{v_1, v_2, ..., v_r\}$ in V to be
 - (iv) linearly independent
 - (v) a spanning set for V
 - (vi) a basis of V

7

Define the dimension of V.

Prove that if $\{v_1, v_2, ..., v_r\}$ is a basis for V, then every vector \underline{v} in V can be expressed uniquely as a linear combination of $v_1, v_2, ..., v_r$.

(b) Let
$$\underline{u_1} = (1,1,1,2)$$
, $\underline{u_2} = (1,2,3,1)$ and $\underline{u_3} = (0,1,2,-1)$ be vectors in \mathbb{R}^4 and $U = span \{ u_1, u_2, u_3 \}$.

- Find a basis for U. What is the dimension of U? (i)
- Determine which of the vectors $\underline{v_1} = (2,1,0,5)$ and $\underline{v_2} = (1,2,1,1)$ belong to U (ii) . For the case when $v_i \in U$, i = 1, 2, express v_i as a linear combination of the vectors of the basis for U.
- Let $w_1 = (2,0,0,3)$ and $w_2 = (1,0,1,0)$ and $W = span\{w_1, w_2\}$. (iii) Find the bases and their dimensions for W and U + W.
- Use the dimension theorem to find the dimension of $U \cap W$. (vii)

Show that $V = \mathbb{R}^2$ is not a vector space over \mathbb{R} with respect to the following operations: 42

- (a,b) + (c,d) = (a,b) and k(a,b) = (ka,kb). (i)
- (a,b) + (c,d) = (a + c, b + d) and $k(a,b) = (k^2a, k^2b)$ (ii)

43 Determine whether W is a subspace or not of the indicated vector space V.

- (i)
- (ii)
- $W = \{(a, b, c): a + b + c = 0, a, b, c \in \mathbb{R}\}, V = \mathbb{R}^{3}.$ $W = \{(a, b, c): a^{2} + b^{2} + c^{2} \le 1, a, b, c \in \mathbb{R}\}, V = \mathbb{R}^{3}.$ $W = \{A: A^{T} = A, A = (a_{ij})_{3\times 3}\}, V = \text{all } 3 \times 3 \text{ matrices.}$ (iii)
- $W = \{A \in V : AT = TA, A = (a_{ij})_{3\times 3}\}$ where T is a given matrix. (iv) $V = all 3 \times 3$ matrices
- $W = \{f : f(7) = f(1)\}$, V=all functions from \mathbb{R} to \mathbb{R} . (v)

(a)Define a subspace W of a vector space V.

Let A be a $m \times n$ matrix and $U = \{ \underline{x} \in \mathbb{R}^n | A\underline{x} = \underline{0} \}$. Show that U is a subspace of \mathbb{R}^n .

- Let $\underline{u}_1 = (1,1,1,2)$, $\underline{u}_2 = (1,2,3,1)$ and $\underline{u}_3 = (0,1,2,-1)$ be vectors in \mathbb{R}^4 and (b) $U = \operatorname{span}\{u_1, u_2, u_3\}.$
 - (v) Find a basis for *U*. What is the dimension of *U*?

⁴⁴

- (vi) Determine whether the vectors $\underline{v}_1 = (2,1,0,5)$ and $\underline{v}_2 = (1,2,1,1)$ belong to *U*. For the case when $\underline{v}_i \in U$, i = 1,2, express \underline{v}_i as a linear combination of the vectors of the basis for *U*.
- (vii) Let $\underline{w}_1 = (2,0,0,3), \underline{w}_2 = (1,0,1,0)$ and $W = \operatorname{span}\{\underline{w}_1, \underline{w}_2\}$. Find the bases and their dimensions of W and U + W.
- (viii) Use the dimension theorem to find the dimension of $U \cap W$.

45

- a). Examine the linear independence or dependence of the following sets of vectors.
 - I. $\{[2-14], [012], [6-114], [4012]\}$
 - II. $\{[3 2 4], [1 0 2], [1 1 1]\}$
 - III. $\{[1 2 3 4], [0 1 1 2], [1 5 1 8], [3 7 8 14]\}$
- b). Show that the following sets of vectors constitute a basis of \mathbb{R}^3
 - I. $\{[2 3 4], [0 1 2], [-1 1 1]\}$
 - II. $\{[1-10], [300], [021]\}$

46. Consider the following subspaces of \mathbb{R}^3 . $U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x - y + 2z = 0 \right\}, W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| 3x + 2y + z = 0 \right\}$

Find a basis of the subspace $U \cap W$.

For what value(s) of c are the vectors $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} c \\ 1 \\ 5 \end{pmatrix}$ linearly independentant? If c=0 , explain why the set $B = \{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3

47. Consider $A = \begin{pmatrix} 4 & -3 & -3 \\ 5 & -4 & -5 \\ -1 & 1 & 2 \end{pmatrix}$, $v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

find the rank of the matrix *A*.Find a general solution of the system of equation AX = 0.write down a basis for the null space of *A*,N(A). determine whether the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ which is defined by $T(x, y) = (x^2, y)$ is linear?

48. Let F be the vector space of all functions from \mathbb{R} in to \mathbb{R} with pointwise addition and scalar multiplication.

(a) Which of the following sets are subspaces of F
S₁ = {f ∈ F | f(0) = 1} S₂ = {f ∈ F | f(1) = 0}

(b) Show that the set s₃ = {f ∈ F | f is differentiable and f' − f = 0} is a subspace of F.

c). Find a homogeneous system whose solution space is W.

50. Prove that the set $H = \{ \begin{pmatrix} 2t \\ t \\ 3t \end{pmatrix} : t \in \mathbb{R} \}$ is a subspace of \mathbb{R}^3 . Show that every vector $\underline{w} \in H$ is a unique linear combination of the vectors $v_1 = (1,0,-1)^T$, $v_2 = (0,1,5)^T$. Is $\{v_1, v_2\}$ a basis of the subspace *H*? if yes ,state why.if no,write down a basis of *H*.state the dimension of *H*

51. Find a basis for the range and a basis for the kernel of the following linear transformations:

(i)
$$T\left(\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}\right) = \begin{bmatrix}x_{1}+3x_{2}\\x_{2}\end{bmatrix}$$

(ii) $T\left(\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\end{bmatrix}\right) = \begin{bmatrix}x_{1}\\-x_{2}\\0\\0\end{bmatrix}$
(iii) $T\left(\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\end{bmatrix}\right) = \begin{bmatrix}x_{3}-x_{2}\\0\\x_{3}-x_{1}\end{bmatrix}$
(iv) $T\left(\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\end{bmatrix}\right) = \begin{bmatrix}x_{1}-x_{2}\\x_{2}+x_{3}\\x_{3}-x_{1}\end{bmatrix}$
(v) $T\left(\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{bmatrix}\right) = \begin{pmatrix}1 & 2 & 0 & 3\\0 & 1 & 8 & 1\\-1 & 0 & 5 & 0\end{pmatrix}\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{bmatrix}$

Also confirm the Rank-Nullity theorem for the above transformations.

52. Suppose that *U* is a vector space of dimension 3 with a basis $B = \{\underline{u}_1, \underline{u}_2, \underline{u}_3\}$. Also suppose that

 $T: \overline{U} \to U$ is a linear transformation with $T(\underline{u}_1) = \underline{u}_3$, $T(\underline{u}_2) = \underline{u}_2$ and $T(\underline{u}_3) = \underline{u}_1$. Prove that Ker $T = \{\underline{0}\}$.

53. Prove that following are equivalent:

- (i) The kernel of the linear transformation $T: U \to V$ is equal to $\{\underline{0}_U\}$.
- (ii) *T* is one-one.
- (iii) The set of vectors $\{T(\underline{u}_i) | i = 1, 2, ..., n\}$ is a basis for the range of T in V.
- 54. Find the row rank of A by finding a row echelon form for U. Then find the column rank of A by finding a row echelon form for A^T .

(i)
$$\begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 7 \\ 1 & 2 & 3 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 2 & 3 \end{pmatrix}$ (iv) $\begin{pmatrix} 1 & 2 & -1 \\ -1 & 4 & 3 \\ 3 & 0 & 1 \end{pmatrix}$

	/1	0	1	0)		/1	-2	-1		/-1	1	0	5 \
(\mathbf{v})	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	0	-1 1	2)	(11)	0	1	1		0	1	-2	-1
(\mathbf{v})	$\binom{3}{2}$	-1	1	² /	(VI)	1	2	3	(VII)	1	0	-3	0
	\3	U	1	0/		$\setminus 0$	1	-1/		$\setminus -1$	0	-2	0 /

55). Prove that the set of all solutions to the two simultaneous linear equations $x_1 - 2x_2 + 5x_3 = 0$ and $x_1 + x_2 - x_3 = 0$ forms a subspace W of $\overline{\mathbb{R}}^3$. Find a basis of W. What is the dimension of W?