1. Find $\cos \theta$ where $\theta$ is the angle between:
a. $\quad u_{1}=(1,3,-5,4)$ and $u_{2}=(2,-3,4-1)$ in $\mathbb{R}^{4}$.
b. $\quad A=\left[\begin{array}{lll}9 & 8 & 7 \\ 1 & 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{lll}6 & 5 & 4 \\ 1 & 2 & 5\end{array}\right]$ where $<A, B>\operatorname{tr}\left(B^{T} A\right)$.
2. Find $k$ so that $u=(1,2, k, 4)$ and $v=(3, k, 7,-4)$ in $\mathbb{R}^{4}$ are orthogonal.
3. $\quad$ Let $W$ be the subspace of in $\mathbb{R}^{5}$ spanned by $u=(1,2,3,-1,2)$ and $v=(2,4,7,2,-1)$. Find a basis of the orthogonal complement $W^{\perp}$ of $W$.
4. Suppose $\left\{u_{1}, u_{2}, \ldots u_{r}\right\}$ is an orthogonal set of vectors.Then

$$
\left\|u_{1}+u_{2}+u_{3}+\cdots u_{r}\right\|^{2}=\left\|u_{1}\right\|^{2}+\left\|u_{2}\right\|^{2}+\cdots+\left\|u_{r}\right\|^{2} .
$$

5. Consider the subspace U spanned by the vectors

$$
v_{1}=(1,1,1,1), v_{2}=(1,1,2,4) \text { and } v_{3}=(1,2,-4,-3) . \text { Find }
$$

a. An orthogonal basis of $U$ b. an orthonormal basis of $U$.
6. Find the characteristic polynomial of $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & 3 & 9\end{array}\right]$
7. Find the minimal polynomial of the matrix $M=\left[\begin{array}{cccc}9 & -1 & 5 & 7 \\ 8 & 3 & 2 & -4 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & -1 & 8\end{array}\right]$
8. Find the characteristic polynomial of each of the following

$$
A=\left[\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right] \quad B=\left[\begin{array}{lll}
3 & 0 & 1 \\
2 & 2 & 5 \\
2 & 1 & 5
\end{array}\right] \quad C=\left[\begin{array}{cccc}
2 & 5 & 1 & 1 \\
1 & 4 & 2 & 2 \\
0 & 0 & 6 & -5 \\
0 & 0 & 2 & 3
\end{array}\right] \quad D=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
0 & 3 & 3 & 4 \\
0 & 0 & 5 & 5 \\
0 & 0 & 0 & 6
\end{array}\right]
$$

9. Find the characteristic polynomial of each of the following linear operators.
i $\quad F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=(3 x+5 y, 2 x-7 y)$.
ii $\quad A: V \rightarrow V$ defined by $A(f)=\frac{d f}{d t}$, Where $V$ is the space of functions with basis $S=\{\sin t$, cost $\}$.
10. Show that a matrix $A$ and its transpose $A^{T}$ have the same characteristic polynomial.

Let $A=\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)$
a. Find all eigenvalues and corresponding eigenvectors.
b. Find a nonsingular matrix $P$ such that $D=P^{-1} A P$ is diagonal , and $P^{-1}$.
c. Find $A^{6}$.
11. Let $A=\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2\end{array}\right]$
a. $\quad$ Find a maximum set of $s$ of linearly independent eigenvectors of $A$.
b. $\quad$ Find the characteristic polynomial of $A$.
c. $\quad$ Is $A$ diagonalizable? If yes find $P$ such that $D=P^{-1} A P$ is diagonal.
12. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y, z)=(2 x+y-2 z, 2 x+3 y-4 z, x+y-z)$.Find all eigenvalues of $T$, and find a basis of each eigenspace.Is $T$ diagonalizable? if so ,find the basis $s$ of $\mathbb{R}^{3}$ that diagonalizes $T$, and find its diagonal representation $D$.
13. Prove the following are equivalent
i. The scalar $\lambda$ is an eigenvalue of $A$
ii. The matrix $\lambda I-A$ is singular.
iii. The scalar $\lambda$ is a root of the charactorictic polynomial of $A$.
14. Let $B=\left[\begin{array}{ccc}11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4\end{array}\right]$
a. Find all eigenvalues of $B$
b. Find a maximum set S of nonzero orthogonal eigenvectors of $B$.
c. Find an orthogonal matrix $P$ such that $D=P^{-1} B P$ is orthogonal.
15. Find the minimal polynomial of each matrices.
$M=\left[\begin{array}{lllll}4 & 1 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4\end{array}\right] M^{\prime}=\left[\begin{array}{cccc}2 & 7 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4\end{array}\right] \quad A=\left[\begin{array}{lllll}2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7\end{array}\right]$
Consider the vectors
$\underline{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \underline{v}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right), \underline{v}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right), \underline{w}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \underline{w_{2}}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right), \underline{w}_{3}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$.
(a) Show that each of the sets $B=\left\{\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}\right\}$ and $\hat{B}=\left\{\underline{w}_{1}, \underline{w}_{2}, \underline{w}_{3}\right\}$ is a basis for $\mathbb{R}^{3}$.
(b) Write down the matrix $A_{T}$ of the linear transformation $T$ given by $\left(\underline{e}_{1}\right)=\underline{v}_{1}, T\left(\underline{e}_{2}\right)=\underline{v}_{2}$ and $T\left(\underline{e}_{3}\right)=$ $\underline{v}_{3}$, where $\left\{\underline{e}_{1}, \underline{e}_{2}, \underline{e}_{3}\right\}$ is the standard basis of $\mathbb{R}^{3}$.
Express $T$ (x) for $x=(x, y, z)^{T}$ as a vector in $\mathbb{R}^{3}$ in terms of $x, y, z$.
(c) Write down the matrix $A_{S}$ of the linear trans formation $S$ given by $\left(\underline{v}_{1}\right)=\underline{e}_{1}, S\left(\underline{v}_{2}\right)=\underline{e}_{2}, S\left(\underline{v}_{3}\right)=\underline{e}_{3}$ . What is the relationship between $S$ and $T$ ?
17. (a) Let $V$ be a subspace of $\mathrm{R}^{\mathrm{n}}$. Explain what it means for a set of vectors in $\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{r}}\right\}$ in $V$ to be
(i) linearly independent
(ii) a spanning set for $V$
(iii) a basis of $V$

Define the dimension of $V$.

Prove that if $\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{r}}\right\}$ is a basis for $V$, then every vector $\underline{v}$ in $V$ can
be expressed uniquely as a linear combination of $\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{V_{r}}$.
(b) Let $\underline{u_{1}}=(1,1,1,2), \underline{u_{2}}=(1,2,3,1)$ and $\underline{u_{3}}=(0,1,2,-1)$ be vectors in $\mathrm{R}^{4}$ and $U=\operatorname{span}\left\{\underline{u_{1}}, \underline{u_{2}}, \underline{u_{3}}\right\}$.
(i) Find a basis for $U$. What is the dimension of $U$ ?
(ii) Determine which of the vectors $\underline{v_{1}}=(2,1,0,5)$ and $\underline{v_{2}}=(1,2,1,1)$ belong to $U$. For the case when $\underline{v_{i}} \in U, i=1,2$, express $\underline{v_{i}}$ as a linear combination of the vectors of the basis for $U$.
(iii) Let $\underline{w_{1}}=(2,0,0,3)$ and $\underline{w_{2}}=(1,0,1,0)$ and $W=\operatorname{span}\left\{\underline{w_{1}}, \underline{w_{2}}\right\}$.

Find the bases and their dimensions for $W$ and $U+W$.
(iv) Use the dimension theorem to find the dimension of $U \cap W$.
18. Define the following terms for a vector space $V$ over a field $F$ :
(i) an inner product space
(ii) norm of a vector in $V$
(ii) orthonormal vectors
(a) Consider $u=\left(x_{1}, x_{2}\right)$ and $v=\left(y_{1}, y_{2}\right)$ in $\mathrm{R}^{2}$.

For what values of $k$ is $\langle u, v\rangle=x_{1} y_{1}-3 x_{1} y_{2}-3 x_{2} y_{1}+k x_{2} y_{2}$ an inner product on $\mathrm{R}^{2}$.
(b) Let $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ be an orthonormal set in $V$. Show that for any $v \in V$, the vector $w=v-\left(v, u_{1}\right) u_{1}-\ldots-\left(v, u_{r}\right) u_{r}$ is orthogonal to each of the $u_{i}$.
(c) Obtain an orthonormal basis for the subspace of $\mathrm{R}^{4}$ generated by $(1,1,1,1),(1,-1,0,0)$ and $(0,0,1,-1)$ with respect to the standard inner product
(a) Let $U$ and $W$ be vector spaces over a field $K$.
(i) Explain what it means for $T: U \rightarrow W$ to be a linear transformation.
(ii) Define the Kernel, $\operatorname{Ker} T$ and image, $\operatorname{Im} T$ of of $T$.
(iii) Show that $T$ is one-one if and only if $\operatorname{ker} T=\{\underline{0}\}$.
(b) Determine whether there is a linear transformation $T: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ such that $T(1,1)=(-1,0,1)$, $T(1,0)=(3,2,1)$ and $T(3,1)=(5,0,-2)$
(c) Consider the basis $B=\left\{\underline{v_{1}}, \underline{v_{2}}, \underline{v_{3}}\right\}$ for $\mathrm{R}^{3}$; where $\underline{v_{1}}=(1,1,0)$,

$$
\underline{v_{2}}=(1,0,1) \text { and } \underline{v_{3}}=(\overline{0,1,1}) .
$$

Show that the linear transformation $T: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ such that $T\left(\underline{v_{1}}\right)=(2,1)$,

$$
\begin{aligned}
T\left(\underline{v_{2}}\right)= & (1,-1) \text { and } T\left(\underline{v_{3}}\right)=(0,0) \text { is } \\
& T(x, y, z)=\left(\frac{3}{2} x+\frac{1}{2} y-\frac{1}{2} z, y-z\right) .
\end{aligned}
$$

Find Kernel of $T$ and image of $T$.
Verify the Rank -Nullity theorem.
(d) Determine whether the linear transformation $T: M_{2 \times 2} \rightarrow \mathrm{R}$ defined by
$T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a+b+c+d$ is one-one.
(a) Let $A$ and $B$ two square matrices. Show that $A B$ and $B A$ have same eigen values.

Consider the matrices $\quad A=\left(\begin{array}{cc}6 & 4 \\ -1 & 2\end{array}\right)$ and $B=\left(\begin{array}{cc}-2 & 0 \\ 6 & 1\end{array}\right)$.
(i)Compute $A B$ and $B A$.
(ii)Find the eigen values of $A B$ and hence deduce the eigenvalues of $B A$.
(iii)Find the eigenvectors of $A B$ and $B A$ and show that although that matrices have same eigenvalues, their eigen vectors are not same.
(iv)Determine which of them are diagonalizable.
(b) For the matrix $A=\left(\begin{array}{ccc}1 & 2 & 0 \\ 2 & 1 & -6 \\ 2 & -2 & 3\end{array}\right)$ find $P$ such that $P^{-1} A P$ is a diagonal matrix. Hence compute $A^{2}$ and using the Cayley-Hamilton theorem find $A^{-1}$.
(a) Define a subspace $W$ of a vector space $V$.

Let $A$ be a $m \times n$ matrix and $U=\left\{\underline{x} \in \mathbb{R}^{n} \mid A \underline{x}=\underline{0}\right\}$. Show that $U$ is a subspace of $\mathbb{R}^{n}$.
(b) Let $\underline{u}_{1}=(1,1,1,2), \underline{u}_{2}=(1,2,3,1)$ and $\underline{u}_{3}=(0,1,2,-1)$ be vectors in $\mathbb{R}^{4}$ and $U=\operatorname{span}\left\{\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}\right\}$.
(i) Find a basis for $U$. What is the dimension of $U$ ?
(ii) Determine whether the vectors $\underline{v}_{1}=(2,1,0,5)$ and $\underline{v}_{2}=(1,2,1,1)$ belong to $U$.For the case when $\underline{v}_{i} \in U, i=1,2$, express $\underline{v}_{i}$ as a linear combination of the vectors of the basis for $U$.
(iii) Let $\underline{w}_{1}=(2,0,0,3), \underline{w_{2}}=(1,0,1,0)$ and $W=\operatorname{span}\left\{\underline{w}_{1}, \underline{w}_{2}\right\}$. Find the bases and their dimensions of $W$ and $U+W$.
(iv) Use the dimension theorem to find the dimension of $U \cap W$.
22. (a) Given that $\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$ are eigen vectors of the matrix
$A=\left(\begin{array}{ccc}1 & -2 & -6 \\ 2 & 5 & 6 \\ -2 & -2 & -3\end{array}\right)$. Find an invertible matrix $P$ such that $P^{-1} A P$ is diagonal.
(b) Consider the matrix $A=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0\end{array}\right)$.
(i) Find the minimum polynomial of $A$.
23. Determine whether $W$ is a subspace or not of the indicated vector space $V$.
(i) $\quad W=\{(a, b, c): a+b+c=0, a, b, c \in \mathbb{R}\}, V=\mathbb{R}^{3}$.
(ii) $\quad W=\left\{(a, b, c): a^{2}+b^{2}+c^{2} \leq 1, a, b, c \in \mathbb{R}\right\}, V=\mathbb{R}^{3}$.
(iii) $W=\left\{A: A^{T}=A, A=\left(a_{i j}\right)_{3 \times 3}\right\}, V=$ all $3 \times 3$ matrices.
(iv) $W=\left\{A \in V: A T=T A, A=\left(a_{i j}\right)_{3 \times 3}\right\}$ where $T$ is a given matrix.
$V=$ all $3 \times 3$ matrices
(v) $W=\{f: f(7)=f(1)\} \quad, V=$ all functions from $\mathbb{R}$ to $\mathbb{R}$.
24. Explain why the matrix $C=\left(\begin{array}{ccc}5 & 0 & 4 \\ a & -1 & b \\ 2 & 0 & 3\end{array}\right)$ can be diagonalized for any values of $a, b \in \mathbb{R}$.
25. Find the eigenvalues of the matrices
$A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}-2 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & 1 & 2\end{array}\right)$ and show that neither matrix can be diagonalized over the real numbers.
26. Let $=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$. Find the characteristic polynomial and the minimum polynomial of the matrix.
27. Find the characteristic equation of the matrix $=\left(\begin{array}{lll}3 & -1 & 2 \\ 5 & -3 & 5 \\ 1 & -1 & 2\end{array}\right)$. Find the eigenvalues (which are integers) and corresponding eigenvectors of $B$. Find a basis of $\mathbb{R}^{3}$ consisting of eigenvectors of the matrix $B$. Find an invertible matrix $P$ and a diagonal matrix $D$ such that $P^{-1} B P=D$. Check your answer for $P$ by showing $B P=P D$. Then calculate $P^{-1}$ and check that $P^{-1} B P=D$.
28. Diagonalize the matrix $A=\left(\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right)$. Describe the eigenspace of each eigenvalue.
29. Decide which of the given matrices is similar to a diagonal matrix and which is not. If the matrix is diagonalizable, find both the diagonal matrix and non-singular matrix $P$ that diagonalizes it.
(i) $\quad\left(\begin{array}{cc}2 & -1 \\ 0 & 2\end{array}\right)$
(ii) $\quad\left(\begin{array}{ll}2 & -3 \\ 1 & -1\end{array}\right)$
(iii) $\quad\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$
(iv) $\quad\left(\begin{array}{ccc}-1 & 0 & 2 \\ 1 & 2 & 1 \\ 2 & 0 & -1\end{array}\right)$
(v) $\left(\begin{array}{lll}2 & 0 & 1 \\ 3 & 3 & 3 \\ 1 & 0 & 2\end{array}\right)$
(vi) $\quad\left(\begin{array}{ccc}3 & 11 & 3 \\ 0 & -4 & -3 \\ 0 & 0 & 6\end{array}\right)$
(vii) $\quad\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
(viii) $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -2 \\ 0 & 3 & 1 & 3 \\ 0 & -2 & 0 & -1\end{array}\right)$
(ix) $\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & -1 & 0 & -2 \\ 0 & 3 & 2 & 3 \\ 0 & -2 & 0 & -1\end{array}\right)$.
30. Find the minimum polynomial of each of the following matrices:
(i) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$
(ii) $\left(\begin{array}{ccc}8 & 9 & 9 \\ 3 & 2 & 3 \\ -9 & -9 & -10\end{array}\right)$
(iii) $\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & -1 & 0 & -2 \\ 0 & 3 & 2 & 3 \\ 0 & -2 & 0 & -1\end{array}\right)$.
31. Find the minimum polynomials of the following matrices:

$$
A=\left(\begin{array}{lllll}
2 & 5 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 0 \\
0 & 0 & 3 & 5 & 0 \\
0 & 0 & 0 & 0 & 7
\end{array}\right) \quad B=\left(\begin{array}{lllll}
3 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 3 & 1 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

32. For each of the following $2 \times 2$ matrices, find all eigenvalues and eigenspaces for each eigenvalue of each matrix ; if possible , diagonalize the matrix:
(a) $\quad\left(\begin{array}{cc}3 & 4 \\ -2 & -3\end{array}\right)$
(b) $\quad\left(\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right)$.
33. For each of the following $3 \times 3$ matrices, find all eigenvalues and eigenspaces for each eigenvalue of each matrix ; if possible , diagonalize the matrix:
(a) $\quad\left(\begin{array}{ccc}-2 & 9 & -6 \\ 1 & -2 & 0 \\ 3 & -9 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & -1 & -1 \\ 0 & 3 & 2 \\ -1 & 1 & 2\end{array}\right)$
(c) $\quad\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$.
34. Consider the matrix $A=\left(\begin{array}{ccc}-10 & 6 & 3 \\ -26 & 16 & 8 \\ 16 & -10 & -5\end{array}\right)$ and $B=\left(\begin{array}{ccc}0 & -6 & 16 \\ 0 & 17 & 45 \\ 0 & -6 & 16\end{array}\right)$.
(i) Show that $A$ and $B$ have the same eigenvalues.
(ii) Reduce $A$ and $B$ to the same diagonal matrix.
(iii) Explain why there is an invertible matrix $R$ such that $R^{-1} A R=B$.
35. Find $A^{8}$ and $B^{8}$, where $A$ and $B$ are the two matrices in problem 3.
36. Suppose that $\theta \in \mathbb{R}$ is not an integer multiple of . Show that the matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ does not have an eigenvector in $\mathbb{R}^{2}$.
37. Consider the matrix $=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$, where $\theta \in \mathbb{R}$.
(i) Show that $A$ has an eigenvector in $\mathbb{R}^{2}$ with eigenvalue 1 .
(ii) Show that any vector $\underline{v} \in \mathbb{R}^{2}$ perpendicular to the eigenvector in part(a) must satisfy

$$
A \underline{v}=-\underline{v}
$$

38. Let $a \in \mathbb{R}$ be non-zero. Show that the matrix $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ cannot be diagonalized.
39. Find the minimum polynomials of each of the following matrices:
$A=\left(\begin{array}{ll}\lambda & a \\ 0 & \lambda\end{array}\right), \quad B=\left(\begin{array}{ccc}\lambda & a & 0 \\ 0 & \lambda & a \\ 0 & 0 & \lambda\end{array}\right), C=\left(\begin{array}{cccc}\lambda & a & 0 & 0 \\ 0 & \lambda & a & 0 \\ 0 & 0 & \lambda & a \\ 0 & 0 & 0 & \lambda\end{array}\right)$, where $a \neq 0$.
40. Define a subspace $W$ of a vector space $V$.
(a) Let $A$ be an $m \times n$ matrix and $U=\left\{\underline{x} \in \mathrm{R}^{\mathrm{n}} \mid A \underline{x}=\underline{0}\right\}$. Show that $U$ is a subspace of $\mathrm{R}^{n}$.

If $A=\left(\begin{array}{cccc}1 & 2 & 1 & -1 \\ -3 & -6 & 0 & 6 \\ 1 & 2 & 2 & 0\end{array}\right)$,
then show that the subspace
$U=\left\{\underline{x} \in \mathrm{R}^{4} \mid A \underline{x}=\underline{0}\right\}$ is given by $U=\{(2 r-2 s, s,-r, r) \mid r, s \in \mathrm{R}\}$.
(b) Show that the set of all polynomials of degree exactly 5 is not a subspace of $P_{5}$, the vector space of all polynomials of degree less or equal 5 .
(c) $\quad$ Suppose that $U$ and $W$ are subspaces of a vector space $V$.

Define the sum $V=U+W$ and the direct sum $V=U \oplus W$.
Let $W_{1}=\{(a, b, 0,0) \mid a, b \in \mathrm{R}\}$ and $W_{2}=\{(0,0, c, d) \mid c, d \in \mathrm{R}\}$ are two subspaces of $\mathrm{R}^{4}$. Show that $\mathrm{R}^{4}=W_{1} \oplus W_{2}$.
41. (a) Let $V$ be a subspace of $\mathrm{R}^{\mathrm{n}}$. Explain what it means for a set of vectors in
$\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{r}}\right\}$ in $V$ to be
(iv) linearly independent
(v) a spanning set for $V$
(vi) a basis of $V$

Define the dimension of $V$.
Prove that if $\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{r}}\right\}$ is a basis for $V$, then every vector $\underline{v}$ in $V$ can be expressed uniquely as a linear combination of $\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{r}}$.
(b) Let $\underline{u_{1}}=(1,1,1,2), \underline{u_{2}}=(1,2,3,1)$ and $\underline{u_{3}}=(0,1,2,-1)$ be vectors in $R^{4}$ and $U=\overline{\operatorname{span}}\left\{\underline{u_{1}}, \underline{u_{2}}, \underline{u_{3}}\right\}$.
(i) Find a basis for $U$. What is the dimension of $U$ ?
(ii) Determine which of the vectors $\underline{v_{1}}=(2,1,0,5)$ and $\underline{v_{2}}=(1,2,1,1)$ belong to $U$ . For the case when $\underline{v_{i}} \in U, i=1,2$, express $\underline{v_{i}}$ as a linear combination of the vectors of the basis for $U$.
(iii) Let $\underline{w_{1}}=(2,0,0,3)$ and $\underline{w_{2}}=(1,0,1,0)$ and $W=\operatorname{span}\left\{\underline{w_{1}}, \underline{w_{2}}\right\}$. Find the bases and their dimensions for $W$ and $U+W$.
(vii) Use the dimension theorem to find the dimension of $U \cap W$.

42 Show that $V=\mathbb{R}^{2}$ is not a vector space over $\mathbb{R}$ with respect to the following operations:
(i) $(a, b)+(c, d)=(a, b)$ and $k(a, b)=(k a, k b)$.
(ii) $(a, b)+(c, d)=(a+c, b+d)$ and $k(a, b)=\left(k^{2} a, k^{2} b\right)$

43 Determine whether $W$ is a subspace or not of the indicated vector space $V$.
(i) $W=\{(a, b, c): a+b+c=0, a, b, c \in \mathbb{R}\}, V=\mathbb{R}^{3}$.
(ii) $\quad W=\left\{(a, b, c): a^{2}+b^{2}+c^{2} \leq 1, a, b, c \in \mathbb{R}\right\}, V=\mathbb{R}^{3}$.
(iii) $W=\left\{A: A^{T}=A, A=\left(a_{i j}\right)_{3 \times 3}\right\}, V=$ all $3 \times 3$ matrices.
(iv) $W=\left\{A \in V: A T=T A, A=\left(a_{i j}\right)_{3 \times 3}\right\}$ where $T$ is a given matrix.
$V=$ all $3 \times 3$ matrices
(v) $\quad W=\{f: f(7)=f(1)\}, V=$ all functions from $\mathbb{R}$ to $\mathbb{R}$.
(a)Define a subspace $W$ of a vector space $V$.

Let $A$ be a $m \times n$ matrix and $U=\left\{\underline{x} \in \mathbb{R}^{n} \mid A \underline{x}=\underline{0}\right\}$. Show that $U$ is a subspace of $\mathbb{R}^{n}$.
(b) Let $\underline{u}_{1}=(1,1,1,2), \underline{u}_{2}=(1,2,3,1)$ and $\underline{u}_{3}=(0,1,2,-1)$ be vectors in $\mathbb{R}^{4}$ and $U=\operatorname{span}\left\{\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}\right\}$.
(v) Find a basis for $U$. What is the dimension of $U$ ?
(vi) Determine whether the vectors $\underline{v}_{1}=(2,1,0,5)$ and $\underline{v}_{2}=(1,2,1,1)$ belong to $U$.For the case when $\underline{v}_{i} \in U, i=1,2$, express $\underline{v}_{i}$ as a linear combination of the vectors of the basis for $U$.
(vii) Let $\underline{w}_{1}=(2,0,0,3), \underline{w_{2}}=(1,0,1,0)$ and $W=\operatorname{span}\left\{\underline{w_{1}}, \underline{w_{2}}\right\}$. Find the bases and their dimensions of $W$ and $U+W$.
(viii) Use the dimension theorem to find the dimension of $U \cap W$.

45
a). Examine the linear independence or dependence of the following sets of vectors.
I. $\quad\left\{\left[\begin{array}{lll}2 & -1 & 4\end{array}\right],\left[\begin{array}{lll}0 & 1 & 2\end{array}\right],\left[\begin{array}{lll}6 & -1 & 14\end{array}\right],\left[\begin{array}{lll}4 & 0 & 12\end{array}\right]\right\}$
II. $\quad\left\{\left[\begin{array}{lll}3 & 2 & 4\end{array}\right],\left[\begin{array}{lll}1 & 0 & 2\end{array}\right],\left[\begin{array}{lll}1 & -1 & -1\end{array}\right]\right\}$

b). Show that the following sets of vectors constitute a basis of $\mathbb{R}^{3}$
I. $\quad\left\{\left[\begin{array}{lll}2 & 3 & 4\end{array}\right],\left[\begin{array}{lll}0 & 1 & 2\end{array}\right],\left[\begin{array}{llll}-1 & 1 & -1\end{array}\right]\right\}$
II. $\quad\left\{\left[\begin{array}{lll}1 & -1 & 0\end{array}\right],\left[\begin{array}{lll}3 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 2 & 1\end{array}\right]\right\}$
46. Consider the following subspaces of $\mathbb{R}^{3}$.
$U=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \right\rvert\, x-y+2 z=0\right\}, W=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \right\rvert\, 3 x+2 y+z=0\right\}$
Find a basis of the subspace $U \cap W$.
For what value(s) of c are the vectors $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{l}c \\ 1 \\ 5\end{array}\right)$ linearly independentant? If $\mathrm{c}=0$, explain why the set $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of $\mathbb{R}^{3}$
47. Consider $A=\left(\begin{array}{ccc}4 & -3 & -3 \\ 5 & -4 & -5 \\ -1 & 1 & 2\end{array}\right), v=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), X=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
find the rank of the matrix $A$.Find a general solution of the system of equation $A X=0$.write down a basis for the null space of $A, \mathrm{~N}(\mathrm{~A})$.
determine whether the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is defined by $T(x, y)=\left(x^{2}, y\right)$ is linear?
48. Let F be the vector space of all functions from $\mathbb{R}$ in to $\mathbb{R}$ with pointwise addition and scalar multiplication.
(a) Which of the following sets are subspaces of F

$$
S_{1}=\{f \in F \mid f(0)=1\} \quad S_{2}=\{f \in F \mid f(1)=0\}
$$

(b) Show that the set $s_{3}=\left\{f \in F \mid \mathrm{f}\right.$ is differentiable and $\left.f^{\prime}-f=0\right\}$ is a subspace of $F$. (c)
49. Let $U=\operatorname{span}\{(1,3,-2,2,3),(1,4,-3,4,2),(2,3,-1,-2,9)\}$
$\mathrm{V}=\operatorname{span}\{(1,3,0,2,1),(1,5,-6,6,3),(2,5,3,2,1)\}$
a). Find a basis and the dimension of $U+W$.
b). Find a homogeneous system whose solution space is $U$.
c). Find a homogeneous system whose solution space is $W$.
50. Prove that the set $\left.H=\left\{\begin{array}{c}2 t \\ t \\ 3 t\end{array}\right): t \in \mathbb{R}\right\}$ is a subspace of $\mathbb{R}^{3}$.

Show that every vector $\underline{w} \in H$ is a unique linear combination of the vectors $v_{1}=(1,0,-1)^{T}, v_{2}=(0,1,5)^{T}$. Is $\left\{v_{1}, v_{2}\right\}$ a basis of the subspace $H$ ? if yes, state why.if no, write down a basis of $H$.state the dimension of $H$
51. Find a basis for the range and a basis for the kernel of the following linear transformations:

$$
T\left(\left[\begin{array}{l}
x_{1}  \tag{i}\\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+3 x_{2} \\
x_{2}
\end{array}\right]
$$

(ii)

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
-x_{2} \\
0
\end{array}\right]
$$

(iii) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{3}-x_{2} \\ 0 \\ x_{3}-x_{1}\end{array}\right]$
(iv) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{l}x_{1}-x_{2} \\ x_{2}+x_{3} \\ x_{3}-x_{1}\end{array}\right]$
(v)

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left(\begin{array}{cccc}
1 & 2 & 0 & 3 \\
0 & 1 & 8 & 1 \\
-1 & 0 & 5 & 0
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Also confirm the Rank-Nullity theorem for the above transformations.
52. Suppose that $U$ is a vector space of dimension 3 with a basis $B=\left\{\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}\right\}$. Also suppose that
$T: U \rightarrow U \quad$ is a linear transformation with $T\left(\underline{u}_{1}\right)=\underline{u}_{3}, T\left(\underline{u}_{2}\right)=\underline{u}_{2}$ and $T\left(\underline{u}_{3}\right)=\underline{u}_{1}$.
Prove that Ker $T=\{\underline{0}\}$.
53. Prove that following are equivalent:
(i) The kernel of the linear transformation $T: U \rightarrow V$ is equal to $\left\{\underline{0}_{U}\right\}$.
(ii) $T$ is one-one.
(iii) The set of vectors $\left\{T\left(\underline{u}_{i}\right) \mid i=1,2, \ldots, n\right\}$ is a basis for the range of $T$ in $V$.
54. Find the row rank of $A$ by finding a row echelon form for $U$. Then find the column rank of $A$ by finding a row echelon form for $A^{T}$.
(i) $\left(\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right)$
(ii) $\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 4 & 7 \\ 1 & 2 & 3\end{array}\right)$
(iii) $\left(\begin{array}{lll}1 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 2 & 3\end{array}\right)$
(iv) $\left(\begin{array}{ccc}1 & 2 & -1 \\ -1 & 4 & 3 \\ 3 & 0 & 1\end{array}\right)$
(v) $\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 3 & -1 & 1 & 2 \\ 3 & 0 & 1 & 0\end{array}\right)$
(vi) $\left(\begin{array}{ccc}1 & -2 & -1 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & -1\end{array}\right)$
(vii) $\left(\begin{array}{cccc}-1 & 1 & 0 & 5 \\ 0 & 1 & -2 & -1 \\ 1 & 0 & -3 & 0 \\ -1 & 0 & -2 & 0\end{array}\right)$
55). Prove that the set of all solutions to the two simultaneous linear equations
$x_{1}-2 x_{2}+5 x_{3}=0$ and
$x_{1}+x_{2}-x_{3}=0$ forms a subspace $W$ of $\overline{\mathbb{R}}^{3}$. Find a basis of W . What is the dimension of W?

