1. Some Equations from Physics

Bournoulli's Equation $P+\rho g h+\frac{1}{2} \rho v^{2}=$ constant
Simple Harmonic Motion $\ddot{x}=-\omega^{2} x$
Velocity in Polar coordinates $\dot{\boldsymbol{r}}=\dot{\boldsymbol{r}} \boldsymbol{e}_{\boldsymbol{r}}+r \dot{\theta} \boldsymbol{e}_{\boldsymbol{\theta}}$
Acceleration in Polar coordinates $\ddot{\boldsymbol{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \boldsymbol{e}_{\boldsymbol{r}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \boldsymbol{e}_{\boldsymbol{\theta}}$
Resistor $V_{R}=I R$
Inductor $V_{L}=L \frac{d I}{d t}$
Capacitor $V_{C}=\frac{Q}{C}$ or $\frac{d V_{C}}{d t}=\frac{1}{C} \frac{d I}{d t}$
Kichhoff's Law(for a LRC circuit) $V_{S}=V_{R}+V_{L}+V_{C}$

2. Some Equations from Mathematics

Elliptic integral of the first kind $F(k)=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{1-k^{2} \cos ^{2} \theta}}$
Second order linear ordinary differential equation with constant coefficients $\left.f(x)=y^{\prime \prime}+b y^{\prime}+c y=\frac{d}{d x} \frac{d y}{d x}-\alpha\right)-\beta\left(\frac{d y}{d x}-\alpha\right)$
Solution as a two first order linear ODEs $f(x)=\frac{d z}{d x}-\beta z, z=\frac{d y}{d x}-\alpha$
Trapeziodal Rule $\int_{a}^{b} f(x) d x \approx \frac{h}{2}\left(f(a)+2 \sum_{k=1}^{n-1} f(a+k h)+f(b)\right), h=\frac{b-a}{n}$
Polar coordinates $\boldsymbol{r}=r \cos \theta \boldsymbol{i}+r \sin \theta \boldsymbol{j}=r \boldsymbol{e}_{\boldsymbol{r}}, \boldsymbol{e}_{\boldsymbol{\theta}}=-\sin \theta \boldsymbol{i}+\cos \theta \boldsymbol{j}$
Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta, i^{2}=-1$
Complex number $z=x+i y=r e^{i \theta}, r=|z|, \theta=\operatorname{Arg} z$

Example 1.

1. Show that the sum of the distance to the perimeter from the two foci of an ellipse is a constant.
2. Show that an Ellipse can be written $r=\frac{p}{1+e \cos \theta}, p=$ semi-latus rectum, $e=e c c e n t r i c i t y ~$
3. A cylindrical container of radius R and height H has a hole of radius r at the bottom. How long will it take for the container full of water to drain?
4. How long will it take if the container is the parabola $y=x^{2}, x \in[0,1]$ rotated about the y axis
5. Solve the ODE $y^{\prime \prime}+5 y^{\prime}+6 y=\sin x$
6. Find the period of oscillation of a pendulum of length ℓ which is oscillating at an angle 2α.
7. Deduce the period of oscillation when $\alpha \rightarrow 0$
8. Write differential equations for planetary motion using Newton's laws and show the Kepler's laws of planetary motion:
The orbit of every planet is an ellipse with the Sun at one of the two foci.
A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.
The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
9. Without directly using calculus, try to show that the ratio circumference/radius of a circle is a constant. How to show that angle is independent of radius?
10. Write down rational approximations to π using its Continued Fraction.
