Department of Mathematics Welcome you all!

1 Introduction

We offer the following 3 credit course in semester 1
MA1013: Mathematics(Logic and Set Theory, Real Analysis, Vectors and Matrices). There will be 3 hours of lectures and 1 hour of tutorial classes.

There are 3 major areas in Pure Mathematics: Analysis, Algebra and Topology.
Examples for Applied Mathematics topics are Differential Equations and Numerical Analysis. Statistics is regarded as a separate area.
Logic and Set Theory provides the foundations of Pure Mathematics.
This course is intended to provide a good background to follow university level mathematics by taking Advanced Level mathematics topics and relating and enhancing the ideas in them.

2 Some Mathematical References

Technical Terms in Sinhala/Tamil
http://www.languagesdept.gov.lk
Websites
https://en.wikipedia.org(usually the first item in a maths topic search)
http://mathworld.wolfram.com/(usually the second item in a maths topic search) https://www.wolframalpha.com/(web version of the Mathematica software)
http://www.math.mrt.ac.lk/(department website)
Books(a general reference covering all areas)
Calculus I and II, Tom M. Apostol
Mathematical Software
Mathematica, MatLab, Maple

3 Some Equations from Physics

Velocity $v=\frac{d s}{d t}$, Acceleration $a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}=v \frac{d v}{d s}$
Motion under constant acceleration
$v=u+a t, s=a t+\frac{1}{2} a t^{2}, v^{2}=u^{2}+2 a s, s=\frac{u+v}{2} t$

Newton's law of gravitation $F=\frac{G M m}{r^{2}}$, Gravitational acceleration $g=\frac{G M}{R^{2}}$
Angular velocity $\omega=\frac{d \theta}{d t}, \omega=\frac{v}{r}$ if r is constant
Angular acceleration $\alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}, \alpha=\frac{a}{r}$ if r is constant
Equation of angular motion $\tau=I \alpha$
Moment of inertia $I=\int r^{2} d m$, Radius of gyration $R^{2}=\frac{\int r^{2} d m}{\int d m}$
Centre of mass $\bar{x}=\frac{\int x d m}{\int d m}, \bar{y}=\frac{\int y d m}{\int d m}$

4 Some Equations from Mathematics

Length of a curve $\int \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$, Area under a curve $\int y d x$
Volume of revolution around the x axis $\int \pi y^{2} d x, \int 2 \pi y x d y$
Integration by parts $\int u d v=u v-\int v d u$, Taylor series $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
L'Hopital rule $\lim \frac{f(x)}{g(x)}=\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}$ for the indeterminate forms $\frac{0}{0}$ of $\frac{\infty}{\infty}$
Parabola $y^{2}=4 a x$, Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, Eccentricity $e^{2}=1-\frac{b^{2}}{a^{2}}$ for ellipse
Elliptic integral of the second kind $E(k)=\int_{0}^{\frac{\pi}{2}} \sqrt{1-k^{2} \cos ^{2} \theta} d \theta$
First order linear ordinary differential equation
$\frac{d y}{d x}+P(x) y=Q(x)$, solution $y=\frac{1}{I(x)} \int Q(x) I(x) d x$ where $I(x)=e^{\int P(x) d x}$.
Example 1. Answer the questionnaire given.
Example 2. An object of mass m is thrown at an acute angle against gravity. Show that the path is a parabola.
Example 3. Find the arc length/area/surface area/volume, centre of mass, radii of gyration for the flowing objects

1. Curve C given by $y=\frac{x^{2}}{2}$ from $x=-1$ to 1 .
2. Region A between $y=\frac{x^{2}}{2}$ and $y=1$.
3. Surface of revolution of C along x / y axis.
4. Volume of revolution of A along x / y axis.

Example 4. Do the above example when C is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Example 5. An object of mass m is thrown at an acute angle against gravity where the air resistance is $k v, k$ is a constant.

1. Find the equation of the trajectory.
2. Deduce the trajectory when $k=0$.
