## MA(101)

## VECTORS AND 3-D GEOMETRY

Q 1. Determine the lengths $|\overrightarrow{\mathrm{OP}}|$ of the vectors $\underline{\mathrm{OP}}$ given that 0 is the origin and the points $P$ are:
(a) $(1,3,4)$
(b) $(2,4,5)$
(c) $(4,0,2)$

Solution: . (a) $\left.\overrightarrow{\mathrm{OP}}=\underline{i}+3 \underline{j}+4 \underline{\mathrm{k}}|\overrightarrow{\mathrm{OP}}|=\sqrt{(\underline{i}+3 \underline{j}+4 \underline{\mathrm{k}}) \cdot(\underline{i}+3 \underline{\mathrm{j}}+4 \underline{\mathrm{k}}})=\sqrt{\left(1^{2}+3^{2}+4^{2}\right.}\right)=\sqrt{26}$
(b) $\left.\overrightarrow{\mathrm{OP}}=2 \underline{\mathrm{i}}+4 \underline{\mathrm{j}}+5 \underline{\mathrm{k}}|\overrightarrow{\mathrm{OP}}|=\sqrt{(2 \underline{\mathrm{i}}+4 \underline{\mathrm{j}}+5 \underline{\mathrm{k}}) \cdot(2 \underline{\mathrm{i}}+4 \underline{\mathrm{j}}+5 \underline{\mathrm{k}})}=\sqrt{\left(2^{2}+4^{2}+5^{2}\right.}\right)=\sqrt{45}$
(c) $\overrightarrow{\mathrm{OP}}=4 \underline{\mathrm{i}}+0 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}|\overrightarrow{\mathrm{OP}}|=\sqrt{(4 \underline{\mathrm{i}}+0 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}) \cdot(4 \underline{\mathrm{i}}+0 \underline{\mathrm{j}}+2 \underline{\mathrm{k}})}=\sqrt{\left(4^{2}+0^{2}+2^{2}\right)}=\sqrt{20}$

Q2. Find the lengths $|\overrightarrow{\mathrm{OP}}|$, the direction cosines and the angles $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ of the vectors $\underline{\mathrm{OP}}$, where the points $P$ are:
(a) $(2,-\mathrm{I},-1)$;
(b) $(4,0,2)$;
(c) $(-1,2,1)$.

Solution: (a) $\left.\overrightarrow{\mathrm{OP}}=2 \underline{i}-\underline{j}-\underline{k}|\overrightarrow{\mathrm{OP}}|=\sqrt{\left(2^{2}+1^{2}+1^{2}\right.}\right)=\sqrt{6}, \frac{\overrightarrow{\mathrm{OP}}}{|\mathrm{OP}|}=\frac{2 \underline{i}-\underline{\mathrm{j}}-\underline{k}}{\sqrt{6}}$, then $\cos \theta_{1}=\frac{2}{\sqrt{6}}, \cos \theta_{2}=\frac{-1}{\sqrt{6}}$ and $\cos \theta_{3}=\frac{-1}{\sqrt{6}}$.
(b) $\left.\overrightarrow{\mathrm{OP}}=4 \underline{i}+0 \underline{j}+2 \underline{\mathrm{k}}|\overrightarrow{\mathrm{OP}}|=\sqrt{\left(4^{2}+0^{2}+2^{2}\right.}\right)=\sqrt{20}, \frac{\overrightarrow{\mathrm{OP}}}{|\mathrm{OP}|}=\frac{4 \underline{i}+0 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}}{\sqrt{20}}$, then $\cos \theta_{1}=\frac{4}{\sqrt{20}}, \cos \theta_{2}=0$ and $\cos \theta_{3}=\frac{2}{20}$
(c) $\left.\overrightarrow{\mathrm{OP}}=-\underline{i}+2 \underline{j}+1 \underline{k}|\overrightarrow{\mathrm{OP}}|=\sqrt{\left(1^{2}+2^{2}+1^{2}\right.}\right)=\sqrt{6}, \frac{\overrightarrow{\mathrm{OP}}}{|\mathrm{OP}|}=-\frac{-\underline{i}+2 \underline{j}+\underline{k}}{\sqrt{6}}$, then $\cos \theta_{1}=\frac{-1}{\sqrt{6}}, \cos \theta_{2}=\frac{2}{\sqrt{6}}$ and $\cos \theta_{3}=\frac{1}{\sqrt{6}}$

Q3. Find the direction ratios, the direction cosines and the angles $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ of the vectors $\underline{\mathrm{OP}}$ where the points P are:
(a) $(1,1,1)$;
(b) $(-1,1,1)$;
(c) $(21,-1)$.

## Solution :

(a) $\overrightarrow{\mathrm{OP}}=\underline{i}+\underline{j}+\underline{k}$ then direction ratios line OP is $1: 1: 1$
$\left.|\overrightarrow{\mathrm{OP}}|=\sqrt{\left(1^{2}+1^{2}+1^{2}\right.}\right)=\sqrt{3}, \frac{\overrightarrow{\mathrm{OP}}}{|\mathrm{OP}|}=-\frac{\underline{i}+\underline{\mathrm{j}}+\underline{\mathrm{k}}}{\sqrt{3}}$, then direction cosine of line OP :
$\cos \theta_{1}=\frac{1}{\sqrt{3}}, \cos \theta_{2}=\frac{1}{\sqrt{3}}$ and $\cos \theta_{3}=\frac{1}{\sqrt{3}}$
(b) $\overrightarrow{\mathrm{OP}}=-\underline{\mathrm{i}}+\underline{\mathrm{j}}+\underline{\mathrm{k}}$ then direction ratios line OP is $-1: 1: 1$
$\left.|\overrightarrow{\mathrm{OP}}|=\sqrt{\left(1^{2}+1^{2}+1^{2}\right.}\right)=\sqrt{3}, \frac{\overrightarrow{\mathrm{OP}}}{|\mathrm{OP}|}=-\frac{-\underline{i}+\underline{\mathrm{j}}+\underline{\mathrm{k}}}{\sqrt{3}}$, then direction cosine of line OP :
$\cos \theta_{1}=\frac{-1}{\sqrt{3}}, \cos \theta_{2}=\frac{1}{\sqrt{3}}$ and $\cos \theta_{3}=\frac{1}{\sqrt{3}}$
(c) $\overrightarrow{\mathrm{OP}}=2 \underline{i}+\underline{j}-\underline{k}$ then direction ratios line OP is $2: 1:-1$
$\left.|\overrightarrow{\mathrm{OP}}|=\sqrt{\left(2^{2}+1^{2}+1^{2}\right.}\right)=\sqrt{6}, \frac{\overrightarrow{\mathrm{OP}}}{|\mathrm{OP}|}=\frac{2 \underline{\underline{i}+\underline{j}}-\underline{\mathrm{k}}}{\sqrt{6}}$, then direction cosine of line $\mathrm{OP}: \cos \theta_{1}=\frac{2}{6}, \cos \theta_{2}=\frac{1}{\sqrt{6}}$ and $\cos \theta_{3}=\frac{-1}{\sqrt{6}}$

Q4. Determine the angles $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ for the vectors with the direction cosines:
(a) $\left\{\frac{\sqrt{3}}{2}, 0, \frac{1}{2}\right\}$,
(b) $\left\{\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\}, \quad\left\{\frac{1}{3},-\frac{1}{3}, \frac{\sqrt{7}}{3}\right\}$

Solution: (a) $\left\{\frac{\sqrt{3}}{2}, 0, \frac{1}{2}\right\}, \Rightarrow \cos \alpha=\frac{\sqrt{3}}{2}, \cos \beta=0, \cos \gamma=\frac{1}{2}$

$$
\alpha=\pi / 6, \beta=\pi / 2 \text { and } \gamma=\pi / 3
$$

(b) $\left\{\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\} \Rightarrow \alpha=\beta=\gamma=\cos ^{-1} \frac{1}{\sqrt{3}}$
(c) $\left\{\frac{1}{3},-\frac{1}{3}, \frac{\sqrt{7}}{3}\right\} \Rightarrow \alpha=\cos ^{-1} \frac{1}{3}, \beta=\cos ^{-1}-\frac{1}{3}, \gamma=\cos ^{-1} \frac{\sqrt{7}}{3}$

Q5. Determine the lengths $|\overrightarrow{\mathrm{AB}}|$ of the vectors $\underline{A B}$, given that the end points $A$ and $B$. Use your results to determine the direction cosines for each of these vectors.
(a) $\quad \mathrm{A}=(1,1,1), \quad \mathrm{B}=(2, \mathrm{O}, 6)$
(b) $\quad \mathrm{A}=(2,-1,1), \quad \mathrm{B}=(-2,2,2)$
(c) $\quad \mathrm{A}=(-1,3,1), \quad \mathrm{B}=(-2,-1,0)$.

Use your results to determine the direction cosines for each of these vectors.

## Solution:

$\overrightarrow{\mathrm{AB}}=\underline{\mathrm{i}}-\underline{\mathrm{j}}+5 \underline{\mathrm{k}}$ and $|\overrightarrow{\mathrm{AB}}|=\sqrt{1^{2}+1^{2}+5^{2}}=\sqrt{27}$.
$\cos \alpha=\frac{1}{\sqrt{27}}, \cos \beta=\frac{-1}{\sqrt{27}}, \cos \gamma=\frac{5}{\sqrt{27}}$,
(b) $\mathrm{A}=(2,-1,1), \mathrm{B}=(-2,2,2)$
$\overrightarrow{\mathrm{AB}}=-4 \underline{\mathrm{i}}+\underline{\mathrm{j}}+\underline{\mathrm{k}}$ and $|\overrightarrow{\mathrm{AB}}|=\sqrt{4^{2}+1^{2}+1^{2}}=\sqrt{18}$.
$\cos \alpha=\frac{-4}{\sqrt{18}}, \cos \beta=\frac{1}{\sqrt{18}}, \cos \gamma=\frac{1}{\sqrt{18}}$,
(c) $\quad \mathrm{A}=(-1,3,1), \quad \mathrm{B}=(-2,-1,0)$.
$\overrightarrow{\mathrm{AB}}=-\underline{\mathrm{i}}-4 \underline{\mathrm{j}}-1 \underline{\mathrm{k}}$ and $|\overrightarrow{\mathrm{AB}}|=\sqrt{1^{2}+4^{2}+1^{2}}=\sqrt{18}$.
$\cos \alpha=\frac{-1}{\sqrt{18}}, \cos \beta=\frac{4}{\sqrt{18}}, \cos \gamma=\frac{-1}{\sqrt{18}}$,
$\mathbf{Q ( 6 )}$. Write down the position vectors OP in terms of the unit vectors $\mathrm{i}, \mathrm{j}, \mathrm{k}$ given that 0 is the origin and the points $P$ are: (a) $(1,1,1)$ (b) $(2,3,4) \quad$ (c) $(1,2,3)$

## Solution:

(a) $(1,1,1) \overrightarrow{\mathrm{OP}}=\underline{\mathrm{i}}+\underline{\mathrm{j}}+\underline{\mathrm{k}}$,
(b) $(2,3,4)$
$\overrightarrow{\mathrm{OP}}=2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}+4 \underline{\mathrm{k}}$,
(c) $(1,2,3) \overrightarrow{\mathrm{OP}}=\underline{i}+2 \underline{j}+3 \underline{k}$,
$\mathbf{Q ( 7 ) .}$ Determine the values of $\alpha, \beta$ and $\gamma$ in order to that:
$(1-\alpha) \underline{i}+\beta\left(1-\alpha^{2}\right) \underline{j}+(\gamma-2) \underline{k}=\frac{1}{2} \underline{i}+3 \underline{j}+2 \underline{k}$

## Solution:

Equating $\mathrm{i}, \mathrm{j}$ and k components

$$
(1-\alpha)=\frac{1}{2} \Rightarrow \alpha=\frac{1}{2} \beta\left(1-\alpha^{2}\right)=3 \Rightarrow \beta=4 \text { and } \quad(\gamma-2)=2, \Rightarrow \gamma=4
$$

$\mathbf{Q}(\mathbf{8})$. Form the sum $\underline{a}+\underline{b}$ and difference $\underline{a}-\underline{b}$ of the vectors:
(a) $\underline{\mathrm{a}}=3 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}+2 \underline{\mathrm{k}} \quad \underline{\mathrm{b}}=\underline{\mathrm{i}}+\underline{\mathrm{j}}+2 \underline{\mathrm{k}}$
(b) $\underline{a}=-\underline{i}+2 \underline{j}-2 \underline{k} \quad \underline{b}=\underline{i}-\underline{j}+2 \underline{k}$
(c) $\underline{\mathrm{a}}=3 \underline{\mathrm{i}}+\underline{\mathrm{j}}+2 \underline{\mathrm{k}} \quad \underline{\mathrm{b}}=\underline{\mathrm{i}}+3 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}$

## Solution:

(a) $\underline{a}=3 \underline{i}+3 \underline{j}+2 \underline{k} \quad \underline{b}=\underline{i}+\underline{j}+2 \underline{k}$
$\Rightarrow \underline{\mathrm{a}}+\underline{\mathrm{b}}=4 \underline{\mathrm{i}}+4 \mathrm{j}+4 \underline{\mathrm{k}} \Rightarrow \underline{\mathrm{a}}-\underline{\mathrm{b}}=2 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}$
(b) $\underline{\mathrm{a}}=-\underline{\mathrm{i}}+2 \underline{\mathrm{j}}-2 \underline{\mathrm{k}} \quad \underline{\mathrm{b}}=\underline{\mathrm{i}}-\underline{\mathrm{j}}+2 \underline{\mathrm{k}}$
$\Rightarrow \underline{\mathrm{a}}+\underline{\mathrm{b}}=\underline{\mathrm{j}} \Rightarrow \underline{\mathrm{a}}-\underline{\mathrm{b}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-4 \underline{\mathrm{k}}$
(c) $\underline{\mathrm{a}}=3 \underline{\mathrm{i}}+\underline{\mathrm{j}}+2 \underline{\mathrm{k}} \quad \underline{\mathrm{b}}=\underline{\mathrm{i}}+3 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}$
$\Rightarrow \underline{\mathrm{a}}+\underline{\mathrm{b}}=4 \underline{\mathrm{i}}+4 \underline{\mathrm{j}}+4 \underline{\mathrm{k}} \Rightarrow \underline{\mathrm{a}}-\underline{\mathrm{b}}=2 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}$
$\mathbf{Q ( 9 ) .}$. State which of the following pairs of vectors a and b are parallel and which are anti-parallel:
(a) $\underline{a}=\underline{i}-3 \underline{j}+\underline{k}$
$\underline{b}=-4 \underline{i}+12 \underline{j}-4 \underline{k}$
(b) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}}$
$\underline{b}=2 \underline{i}-3 \underline{j}+\underline{k}$
(c) $\underline{\mathrm{a}}=4 \underline{\mathrm{i}}-\underline{\mathrm{j}}-3 \underline{\mathrm{k}}$
$\underline{\mathrm{b}}=3 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}+3 \underline{\mathrm{k}}$

## Solution:

(a) $\underline{\mathrm{a}}=\underline{\mathrm{i}}-3 \underline{j}+\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=-4 \underline{\mathrm{i}}+12 \underline{j}-4 \underline{\mathrm{k}} \quad \Rightarrow \underline{\mathrm{b}}=-4 \underline{\mathrm{a}}, \quad \underline{\mathrm{b}} / / \underline{\mathrm{a}}$,
(b) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=2 \underline{\mathrm{i}}-3 \underline{j}+\underline{\mathrm{k}} \quad \Rightarrow \underline{\mathrm{b}}=-\underline{\mathrm{a}}, \quad \underline{\mathrm{b}} / / \underline{\mathrm{a}}$,
(c) $\underline{\mathrm{a}}=4 \underline{\mathrm{i}}-\underline{\mathrm{j}}-3 \underline{\mathrm{k}} \quad \underline{\mathrm{b}}=3 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}+3 \underline{\mathrm{k}} \quad \Rightarrow \underline{\mathrm{b}}$ and $\underline{\mathrm{a}}$, are anti parallel.

Q(10). Express the following vectors $\underline{a}$ as the product of a scalar and a unit vector:
(a) $\underline{\mathrm{a}}=2 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}}$
(b) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}}$
(c) $\underline{\mathrm{a}}=4 \underline{\mathrm{i}}-\underline{\mathrm{j}}-3 \underline{\mathrm{k}}$

## Solution:

(a) $\underline{\mathrm{a}}=2 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}} \Rightarrow \frac{\underline{\mathrm{a}}}{|\underline{\mathrm{a}}|}=\frac{2 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}}}{\sqrt{14}}, \quad \underline{\mathrm{a}}=\sqrt{14}$ times unit vector
(b) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}} \Rightarrow \frac{\underline{\mathrm{a}}}{|\underline{\mathrm{a}}|}=\frac{-2 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}}}{\sqrt{14}}, \underline{\mathrm{a}}=\sqrt{14}$ times unit vector
(c) $\underline{\mathrm{a}}=4 \underline{\mathrm{i}}-\underline{\mathrm{j}}-3 \underline{\mathrm{k}} \quad \Rightarrow \frac{\underline{\mathrm{a}}}{|\underline{\mathrm{a}}|}=\frac{4 \underline{\mathrm{i}}-\underline{\mathrm{j}}-3 \underline{\mathrm{k}}}{\sqrt{26}}, \quad \underline{\mathrm{a}}=\sqrt{26}$ times unit vector
$Q(11)$. Find the vectors $\underline{A B}$, and their direction cosines given that $A$ and $B$ have position vectors a and b , respectively, where
(a) $\underline{\mathrm{a}}=\underline{\mathrm{i}}-3 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}$
$\underline{b}=-\underline{i}+\underline{j}-4 \underline{k}$
(b) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}}$
$\underline{b}=2 \underline{i}-\underline{j}+\underline{k}$
(c) $\underline{\mathrm{a}}=4 \underline{\mathrm{i}}-\underline{\mathrm{j}}+\underline{\mathrm{k}}$
$\underline{\mathrm{b}}=3 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}+3 \underline{\mathrm{k}}$

## Solution:

(a) $\underline{\mathrm{a}}=\underline{\mathrm{i}}-3 \underline{\mathrm{j}}+2 \underline{\mathrm{k}} \quad \underline{\mathrm{b}}=-\underline{\mathrm{i}}+\underline{\mathrm{j}}-4 \underline{\mathrm{k}}$
$\overrightarrow{\mathrm{AB}}=\underline{\mathrm{b}}-\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+4 \underline{\mathrm{j}}-6 \underline{\mathrm{k}} \quad$ direction cosines of $\mathrm{AB} \quad$ is $-2: 4:-6$
(b) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=2 \underline{\mathrm{i}}-\underline{\mathrm{j}}+\underline{\mathrm{k}}$
$\overrightarrow{\mathrm{AB}}=\underline{\mathrm{b}}-\underline{\mathrm{a}}=4 \underline{\mathrm{i}}-4 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}$ direction cosines of AB is $4:-4: 2$
(c) $\underline{\mathrm{a}}=4 \underline{\mathrm{i}}-\underline{\mathrm{j}}+\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=3 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}+3 \underline{\mathrm{k}}$
$\overrightarrow{\mathrm{AB}}=\underline{\mathrm{b}}-\underline{\mathrm{a}}=-\underline{\mathrm{i}}+3 \underline{j}+2 \underline{\mathrm{k}}$ direction cosines of AB is $-1: 3: 2$
$\mathbf{Q ( 1 2 )}$. Find the scalar products $\underline{\mathrm{a}} \cdot \underline{\mathrm{b}}$ and hence find the angle between the vectors $\underline{\mathrm{a}}$ and $\underline{\mathrm{b}}$ given that:
(a) $\underline{\mathrm{a}}=\underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=-4 \underline{\mathrm{i}}+12 \underline{\mathrm{j}}-4 \underline{\mathrm{k}}$
(b) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=2 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}}$
(c) $\underline{\mathrm{a}}=4 \underline{\mathrm{i}}-\underline{\mathrm{j}}-3 \underline{\mathrm{k}} \quad \underline{\mathrm{b}}=3 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}+3 \underline{\mathrm{k}}$

Solution:
(a) $\underline{\mathrm{a}}=\underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=-4 \underline{\mathrm{i}}+12 \underline{\mathrm{j}}-4 \underline{\mathrm{k}} \Rightarrow \underline{\mathrm{a}} \cdot \underline{\mathrm{b}}=-4-36-4=-44$
(b) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=2 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}} \Rightarrow \underline{\mathrm{a}} \cdot \underline{\mathrm{b}}=-4-9-4=-44$
(c) $\underline{\mathrm{a}}=4 \underline{\mathrm{i}}-\mathrm{j}-3 \underline{\mathrm{k}} \quad \underline{\mathrm{b}}=3 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}+3 \underline{\mathrm{k}} \Rightarrow \underline{\mathrm{a}} \cdot \underline{\mathrm{b}}=12-2-9=1$

Q13. Find unit vectors parallel to the vectors a where:
(a) $\underline{\mathrm{a}}=\underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}}$
(b) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}}$
(c) $\underline{a}=4 \underline{i}-j-3 \underline{k}$

## Solution:

(a) $\underline{\mathrm{a}}=\underline{\mathrm{i}}-3 \underline{j}+\underline{\mathrm{k}} \quad$ Unit vector parallel to $\underline{\mathrm{a}}=\underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}}$ is $\Rightarrow \frac{\underline{\mathrm{a}}}{|\underline{\mathrm{a}}|}=\frac{\underline{i}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}}}{\sqrt{11}}$,
(b) $\underline{a}=-2 \underline{i}+3 \underline{j}-\underline{k}$ Unit vector parallel to $\underline{a}=-2 \underline{i}+3 \underline{j}-\underline{k}$ is $\Rightarrow \frac{\underline{a}}{|\underline{a}|}=\frac{-2 \underline{i}+3 \underline{j}-\underline{k}}{\sqrt{14}}$,
(c) $\underline{a}=4 \underline{i}-\underline{j}-3 \underline{k}$ Unit vector parallel to $\underline{a}=4 \underline{i}-\underline{j}-3 \underline{k}$ is $\Rightarrow \frac{\underline{a}}{|\underline{a}|}=\frac{4 \underline{i}-\underline{j}-3 \underline{k}}{\sqrt{26}}$,
$\mathbf{Q ( 1 4 ) .}$ Evaluate the vector products $\underline{b x} \underline{a}$ given that:
(a) $\underline{a}=-2 \underline{i}+3 \underline{j}-\underline{k}$
$\underline{b}=2 \underline{i}-3 \underline{j}+\underline{k}$
(b) $\underline{\mathrm{a}}=-\underline{\mathrm{i}}+\underline{\mathrm{j}}+\underline{\mathrm{k}}$
$\underline{b}=2 \underline{i}+4 \underline{j}+3 \underline{k}$
(c) $\underline{\mathrm{a}}=-\underline{\mathrm{i}}-\underline{\mathrm{j}}+\underline{\mathrm{k}}$
$\underline{\mathrm{b}}=2 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}$

## Solution:

(a) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=2 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}} \Rightarrow \underline{\mathrm{b}} x \underline{\mathrm{a}}=\left|\begin{array}{ccc}\underline{\mathrm{i}} & \underline{j} & \underline{\mathrm{k}} \\ 2 & -3 & 1 \\ -2 & 3 & -1\end{array}\right|=0$
(b) $\underline{a}=-\underline{i}+\underline{j}+\underline{\mathrm{j}} \quad \underline{\mathrm{b}}=2 \underline{\mathrm{i}}+4 \underline{\mathrm{j}}+3 \underline{\mathrm{k}} \Rightarrow \underline{\mathrm{b}} \times \underline{\mathrm{a}}=\left|\begin{array}{ccc}\underline{\mathrm{i}} & \underline{\mathrm{j}} & \underline{\mathrm{k}} \\ 2 & 4 & 3 \\ -1 & 1 & 1\end{array}\right| \Rightarrow \underline{\mathrm{b}} \times \underline{\mathrm{a}}=\underline{\mathrm{i}}-5 \underline{\mathrm{j}}-6 \underline{\mathrm{k}}$
(c) $\underline{\mathrm{a}}=-\underline{\mathrm{i}}-\underline{\mathrm{j}}+\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=2 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}} \Rightarrow \underline{\mathrm{b} x} \underline{a}=\left|\begin{array}{ccc}\underline{\mathrm{i}} & \underline{j} & \underline{k} \\ 2 & 2 & 2 \\ -1 & -1 & 1\end{array}\right| \Rightarrow \underline{\mathrm{b} x} \underline{a}=4 \underline{i}-4 \underline{j}$
$\mathbf{Q}(15)$. Evaluate the triple scalar products $\underline{a} \cdot(\underline{b x} \underline{c})$ and $\underline{b} \cdot(\underline{a x} \underline{c})$ given that:
(a) $\underline{\mathrm{a}}=-2 \underline{\mathrm{i}}+3 \underline{\mathrm{j}}-\underline{\mathrm{k}} \underline{\mathrm{b}}=2 \underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}}$ and $\underline{\mathrm{c}}=4 \underline{\mathrm{i}}-\underline{\mathrm{j}}-3 \underline{\mathrm{k}}$

## Solution:

$\Rightarrow \underline{\mathrm{a}} \cdot(\underline{\mathrm{bxc}})=\left|\begin{array}{ccc}-2 & 3 & -1 \\ 2 & -3 & 1 \\ 4 & -1 & -3\end{array}\right|=0 \Rightarrow \underline{\mathrm{~b}} \cdot(\underline{\operatorname{axx}} \underline{\mathrm{c}})=\left|\begin{array}{ccc}2 & -3 & 1 \\ -2 & 3 & -1 \\ 4 & -1 & -3\end{array}\right|=0$
(b) $\underline{\mathrm{a}}=\underline{\mathrm{i}}-3 \underline{\mathrm{j}}+\underline{\mathrm{k}} \quad \underline{\mathrm{b}}=-4 \underline{\mathrm{i}}+12 \underline{\mathrm{j}}-4 \underline{\mathrm{k}}$ and $\underline{\mathrm{c}}=2 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}$
$\Rightarrow \underline{a} \cdot(\underline{b x} \underline{c})=\left|\begin{array}{ccc}1 & -3 & 1 \\ -4 & 12 & -4 \\ 2 & 2 & 2\end{array}\right|=0 \Rightarrow \underline{b} \cdot(\underline{a x} \underline{c})=\left|\begin{array}{ccc}-4 & 12 & -4 \\ 1 & -3 & 1 \\ 2 & 2 & 2\end{array}\right|=0$
Q(16). Prove that if $a, b$, and $c$ form three edges of a parallelepiped all meeting at a common point, then the volume of this solid figure is given by $|\mathrm{a} .(\mathrm{bxc})|$. Deduce that the vanishing of the triple scalar product implies that the vectors $\mathrm{a}, \mathrm{b}$, and c are co-planar (that is, all lie in a common plane).

## Solution:

The scalar quantity $\underline{a} .(\underline{b} \times \underline{c})$ is known as the scalar triple product of $\underline{a}$ and $\underline{b x c}$. It is often denoted by $\quad[\mathrm{a}, \underline{\mathrm{b}}, \underline{\mathrm{c}}]$.

The magnitude of this quantity is the volume of the parallelopied formed by the vectors $\underline{a}, \underline{b}$, and $\underline{c}$ , i.e. $|\underline{a} .(\underline{\mathbf{b}} \times \underline{\mathrm{c}})|=|\underline{\mathrm{a}}||\underline{\operatorname{bx}} \underline{\underline{c}}| \cos \theta, \theta$ being the angle between $\underline{\mathrm{a}}$, and $\underline{\mathrm{b}} \underline{\underline{c}}$


Let $\underline{a}, \underline{b}, \underline{c}$ be three given vectors. We can permute the three given vectors in six different ways. Also each manner of writing down the three vectors gives rise to two scalar triple products depending upon the positions of dot and cross. Thus, we have the following twelve scalar triple products
$(\underline{a} \times \underline{b}) \cdot \underline{c},(\underline{b} \times \underline{c}) \cdot \underline{a},(\underline{c} \times \underline{a}) \cdot \underline{b}(\underline{a} \cdot \underline{b}) \times \underline{c},(\underline{b} \cdot \underline{c}) \times \underline{a},(\underline{c} \cdot \underline{a}) \times \underline{b}$
$(\underline{\mathrm{a}} \times \underline{\mathrm{c}}) \cdot \underline{\mathrm{b}},(\underline{\mathrm{b}} \times \underline{\mathrm{a}}) \cdot \underline{\mathrm{c}},(\underline{\mathrm{c}} \times \underline{\mathrm{b}}) \cdot \underline{\mathrm{a}},(\underline{\mathrm{a}} \cdot \underline{\mathrm{c}}) \times \underline{\mathrm{b}},(\underline{\mathrm{b}} \cdot \underline{\mathrm{a}}) \times \underline{\mathrm{c}},(\underline{\mathrm{c}} \cdot \underline{\mathrm{b}}) \times \underline{\mathrm{a}}$
We shall now prove the following two important results
(i). A cyclic permutation of three vectors does not change the value of the scalar triple product and an anti-cyclic permutation changes the value in sign but not in magnitude.
(ii). The positions of dot and cross can be interchanged without any change in the value of the scalar triple product.
Firstly suppose that $\underline{\mathbf{a}}, \underline{\mathbf{b}}, \underline{\mathrm{c}}$ is a right-handed system so have $\mathrm{V}=(\underline{\mathrm{a}} \times \underline{\mathrm{b}}) \cdot \underline{\mathrm{c}}$.
The vector triads $\underline{b}, \underline{c}, \underline{a}$ and $\underline{b}, \underline{c}, \underline{a}$ are also right-handed and the parallelopiped with OA, OB, OC as adjacent edges is the same as that with $\mathrm{OB}, \mathrm{OC}, \mathrm{OA}$ or with $\mathrm{OC}, \mathrm{OA}, \mathrm{OB}$ as adjacent edges. Thus,

$$
\mathrm{V}=[\underline{\mathrm{b}}, \underline{\mathrm{c}}, \underline{\mathrm{a}}] \quad \text { and } \mathrm{V}=[\underline{\mathrm{c}}, \underline{\mathrm{a}}, \underline{\mathrm{~b}}]
$$

1.If $(\underline{a} \times \underline{b}) . \underline{c}=0$ since $(\underline{a} \times \underline{b})$ is perpendicular to both $\underline{a}$, and $\underline{b}$, then vectors $\underline{a}, \underline{b}$ and $\underline{c}$ are coplanar.
2. For the nonzero vectors $\underline{a}, \underline{b}$, and $\underline{c}$, they are coplanar (ie lie on the same plane) if and only if $[\mathrm{a}, \underline{\mathrm{b}}, \mathrm{c}]=0$.
$\mathbf{Q}(17)$. If $\underline{A}=2 \underline{i}+3 \underline{j}-4 \underline{\mathrm{k}}, \underline{\mathrm{B}}=3 \underline{i}+5 \underline{j}+2 \underline{\mathrm{k}}$ and $\underline{\mathrm{C}}=\underline{\mathrm{i}}-2 \underline{j}+3 \underline{\mathrm{k}}$ determine $\underline{A} \underline{\mathrm{~B}}, \underline{\mathrm{~A} x} \underline{\mathrm{~B}}$ and A. $(\mathrm{Bx} \underline{\mathrm{C}})$.

## Solution:

$\underline{A} \cdot \underline{B}=(2 \underline{i}+3 \underline{j}-4 \underline{k}) \cdot(3 \underline{i}+5 \underline{j}+2 \underline{k})=13$
$\Rightarrow \underline{A x} \underline{B}=\left|\begin{array}{lll}\underline{\mathrm{i}} & \underline{\mathrm{j}} & \underline{\mathrm{k}} \\ 2 & 3 & 4 \\ 3 & 5 & 2\end{array}\right|=-14 \underline{\mathrm{i}}+8 \underline{\mathrm{j}}+4 \underline{\mathrm{k}}$
$\Rightarrow \underline{A} \cdot \underline{B x} \underline{C})=\left|\begin{array}{ccc}2 & 3 & 4 \\ 3 & 5 & 2 \\ 1 & -2 & 3\end{array}\right|=-27$
$\mathbf{Q ( 1 8 ) .}$. If $\underline{A}=\underline{i}+3 \underline{j}+5 \underline{k}, \underline{B}=3 \underline{i}+\underline{j}+2 \underline{k}$ and $\underline{C}=\underline{i}-\underline{j}+\underline{k}$ find $\underline{A x}(\underline{B x} \underline{C})$ and $(\underline{A} \underline{B}) x \underline{C}$.

## Solution:

Use the expansion $\underline{A x}(\underline{B} x \underline{C})=(\underline{A} \cdot \underline{C}) \underline{B}-(\underline{A} \cdot \underline{B}) \underline{C}$
$(\underline{\mathrm{A}} \cdot \underline{\mathrm{C}})=3, \quad(\underline{\mathrm{~A}} \cdot \underline{B})=16, \Rightarrow \underline{A x}(\underline{B x} \underline{C})=3(3 \underline{\mathrm{i}}+\underline{\mathrm{j}}+2 \underline{\mathrm{k}})-16(\underline{\mathrm{i}}-\underline{\mathrm{j}}+\underline{\mathrm{k}})=(-7 \underline{\mathrm{i}}+19 \underline{\mathrm{j}}-10 \underline{\mathrm{k}})$
$(\underline{\mathrm{A}} \times \underline{\mathrm{B}}) x \underline{\mathrm{C}}=(\underline{\mathrm{A}} \cdot \underline{\mathrm{C}}) \underline{\mathrm{B}}-(\underline{B} \cdot \underline{\mathrm{C}}) \underline{\mathrm{A}}$
$\Rightarrow(\underline{\mathrm{A}} \times \underline{\mathrm{B}}) x \underline{\mathrm{C}}=3(3 \underline{\mathrm{i}}+\underline{\mathrm{j}}+2 \underline{\mathrm{k}})-4(\underline{\mathrm{i}}+3 \underline{\mathrm{j}}+5 \underline{\mathrm{k}})=(5 \underline{\mathrm{i}}-9 \underline{\mathrm{j}}-14 \underline{\mathrm{k}})$
Q(19). If $\underline{F}=x^{2} \underline{i}+x^{4} \underline{j}+2 x \underline{k}$ then $\frac{d \underline{F}}{d x}=2 x \underline{i}+4 x^{3} \underline{j}+2 \underline{k}$ and $\frac{d^{2} \underline{F}}{d x^{2}}=2 \underline{i}+12 x^{2}$
$\left|\frac{\mathrm{dF}}{\mathrm{dx}}\right|=\sqrt{4 \mathrm{x}^{2}+16 \mathrm{x}^{6}+4}$
$\mathbf{Q ( 2 0 )}$. Find the unit normal vector to the surface $\phi=x z^{2}+3 x y-2 y^{2}+1=0$ at the point $(1,-$ 2,-1)

## Solution:

$\nabla \phi=\left(z^{2}+3 y\right) \underline{i}+\left(3 x-2 z^{2}\right) \underline{j}+(2 x z-4 y z) \underline{k}$
$(\nabla \phi)_{(1,-2,-1)}=-5 \underline{i}+\underline{j}-10 \underline{k}$
$\underline{\mathrm{n}}=\frac{(\nabla \phi)}{|(\nabla \phi)|}=\frac{-5 \underline{\mathrm{i}}+\underline{\mathrm{j}}-10 \underline{\mathrm{k}}}{\sqrt{62}}$
Q(21). Determine the directional derivative of $\phi=\mathrm{xe}^{\mathrm{y}}+\mathrm{yz}{ }^{2}+\mathrm{xyz}$ at the point $(2,0,3)$ in the direction $\underline{\mathrm{A}}=3 \underline{\mathrm{i}}-2 \underline{\mathrm{j}}+\underline{\mathrm{k}}$.

## Solution:

Directional derivative at a given direction is defined by $\nabla \phi \cdot \underline{\mathrm{n}}$
$\nabla \phi=\left(e^{y}+y z\right) \underline{i}+\left(x e^{y}+z^{2}+x z\right) \underline{j}+(2 y z+x z) \underline{k}$
$(\nabla \phi)_{(2,0,3)}=\underline{i}+17 \underline{\mathrm{j}} \Rightarrow \quad(\nabla \phi) \cdot \underline{\mathrm{n}}=(\underline{\mathrm{i}}+17 \underline{\mathrm{j}}) \cdot \frac{(3 \underline{\mathrm{i}-2 \underline{\mathrm{j}}+\underline{\mathrm{k}})}}{\sqrt{14}}=\frac{-31}{\underline{\underline{\sqrt{14}}}}$
$\mathbf{Q ( 2 2 )}$. Determine the values of P such that the three vectors $\underline{A}, \underline{B}$, and $\underline{C}$ are coplanar, when $\underline{\mathrm{A}}=2 \underline{\mathrm{i}}+\underline{\mathrm{j}}+4 \underline{\mathrm{k}}, \underline{\mathrm{B}}=3 \underline{i}+2 \underline{\mathrm{j}}+\mathrm{P} \underline{\mathrm{k}}$ and $\underline{\mathrm{C}}=\underline{\mathrm{i}}+4 \underline{\mathrm{j}}+2 \underline{\mathrm{k}}$.

## Solution:

When vectors $\underline{A}, \underline{B}$, and $\underline{C}$ are coplanar, then $(\underline{\mathrm{A}} \times \underline{\mathrm{B}}) \cdot \underline{\mathrm{C}}=0$
$(\underline{A} \times \underline{B}) \cdot \underline{C}=\left|\begin{array}{lll}2 & 1 & 4 \\ 3 & 2 & p \\ 1 & 4 & 2\end{array}\right|=42-7 p=0 \Rightarrow \underline{\underline{p}=6}$
$\mathbf{Q}(23)$. Find $\operatorname{Curl}(\underline{F})$ and $\operatorname{div}(\underline{F})$ for the vector function $\underline{F}=\operatorname{grad}\left(x^{2}+y^{2}+z^{2}-3 x y z\right)$

## Solution:

$\underline{F}=\nabla \phi=(2 x-3 y z) \underline{i}+(2 y-3 x z) \underline{j}+(2 z-3 x y) \underline{k}$

$$
\operatorname{curI} \underline{F}=\left|\begin{array}{ccc}
\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
(2 x-2 y z) & (2 y-3 x z) & (2 z-3 x y)
\end{array}\right|=0
$$

$$
\operatorname{div} \underline{F}=\nabla^{2} \phi=\frac{\partial}{\partial x}(2 x-3 y z)+\frac{\partial}{\partial y}(2 y-3 x z)+\frac{\partial}{\partial z}(2 z-3 x y)
$$

$$
=2+2+2=6
$$

$\mathbf{Q ( 2 4 )}$. If $\Phi=\frac{\mathrm{x}}{\mathrm{r}^{3}}$, show that $\operatorname{div}\left(\operatorname{grad}(\Phi)=0\left(\right.\right.$ or $\operatorname{Div}(\operatorname{grad})$ is called $\left.\nabla^{2} \Phi=0\right)$

## Solution:

$$
\begin{aligned}
& \frac{\partial \phi}{\partial \mathrm{x}}=\frac{1}{\mathrm{r}^{3}}-\frac{3 \mathrm{x}^{2}}{\mathrm{r}^{5}}, \frac{\partial \phi}{\partial \mathrm{y}}=-\frac{3 \mathrm{xy}}{\mathrm{r}^{5}}, \text { and } \frac{\partial \phi}{\partial \mathrm{z}}=-\frac{3 \mathrm{xz}}{\mathrm{r}^{5}} \\
& \frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}=-\frac{3 \mathrm{x}^{2}}{\mathrm{r}^{5}}-\frac{6 \mathrm{x}}{\mathrm{r}^{5}}+\frac{15 x^{3}}{\mathrm{r}^{7}}, \frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}=-\frac{3 \mathrm{x}}{\mathrm{r}^{5}}+\frac{15 x^{2}}{\mathrm{r}^{7}}, \frac{\partial^{2} \phi}{\partial \mathrm{z}^{2}}=-\frac{3 x^{2}}{\mathrm{r}^{5}}+\frac{15 \mathrm{xz}^{2}}{\mathrm{r}^{7}},
\end{aligned}
$$

Therefore, $\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \phi}{\partial \mathrm{z}^{2}}=0$
$\mathbf{Q}(25)$. Show that $\left.\operatorname{Div}(\underline{r})=3, \operatorname{Curl}(\underline{r})=0, \operatorname{div}\left(r^{n} r\right)=(n+3) r^{n} \quad \nabla^{2}\left(\frac{1}{r}\right)=0 \quad, \operatorname{curl}\left(r^{n} \underline{r}\right)\right)=0$

## Solution:

If $\underline{r}=\underline{x} \underline{i}+y \underline{i}+z \underline{k}$ then, $\operatorname{div}(\underline{r})=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3$. and curlr$=\left|\begin{array}{ccc}\underline{i} & \underline{j} & \underline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z\end{array}\right|=0$
Use the results, $\operatorname{div}(\phi \underline{\mathrm{A}})=\phi \operatorname{div}(\underline{\mathrm{A}})+\nabla \phi \cdot \underline{\mathrm{A}}$ and $\nabla \mathrm{f}(\mathrm{r})=\frac{\mathrm{df}}{\mathrm{dr}} \underline{\underline{r}}$

$$
\begin{aligned}
\operatorname{div}\left(\mathrm{r}^{\mathrm{n}} \mathrm{r}\right) & =\mathrm{r}^{\mathrm{n}} \operatorname{div} \underline{r}+\nabla\left(\mathrm{r}^{\mathrm{n}}\right) \cdot \underline{\mathrm{r}} \\
= & 3 \mathrm{r}^{\mathrm{n}}+\mathrm{nr}^{\mathrm{n}-2} \underline{\mathrm{r}} \cdot \underline{r} \\
= & 3 \mathrm{r}^{\mathrm{n}}+\mathrm{nr}^{\mathrm{n}}=(3+\mathrm{n}) \mathrm{r}^{\mathrm{n}}
\end{aligned}
$$

If $\Phi=\frac{1}{\mathrm{r}}$,

$$
\begin{aligned}
& \frac{\partial \phi}{\partial \mathrm{x}}=-\frac{\mathrm{x}}{\mathrm{r}^{3}}, \frac{\partial \phi}{\partial \mathrm{y}}=-\frac{\mathrm{y}}{\mathrm{r}^{3}} \text {, and } \frac{\partial \phi}{\partial \mathrm{z}}=-\frac{\mathrm{z}}{\mathrm{r}^{3}} \\
& \frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}=\frac{3 \mathrm{x}^{2}}{\mathrm{r}^{5}}-\frac{1}{\mathrm{r}^{3}}, \frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}=\frac{3 \mathrm{y}^{2}}{\mathrm{r}^{5}}-\frac{1}{\mathrm{r}^{3}}, \frac{\partial^{2} \phi}{\partial \mathrm{z}^{2}}=\frac{3 \mathrm{z}^{2}}{\mathrm{r}^{5}}-\frac{1}{\mathrm{r}^{3}}
\end{aligned}
$$

Therefore, $\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \phi}{\partial \mathrm{z}^{2}}=0$
Again use the results, $\operatorname{curl}(\phi \underline{A})=\phi \operatorname{curl}(\underline{A})+\nabla \phi \times \underline{A}$ and $\nabla f(r)=\frac{d f}{d r} \underline{r} \underline{r}$

$$
\begin{aligned}
\operatorname{curl}\left(\mathrm{r}^{\mathrm{n}} \mathrm{r}\right) & =\mathrm{r}^{\mathrm{n}} \operatorname{curlr}+\nabla\left(\mathrm{r}^{\mathrm{n}}\right) \times \underline{\mathrm{r}} \\
& =0+\mathrm{nr}^{\mathrm{n}-2} \underline{\mathrm{r}} \times \underline{\mathrm{r}} \\
= & 0
\end{aligned}
$$

$\mathbf{Q}$ (26). Show that $\operatorname{Curl}(\underline{r} \times \underline{\mathbf{a}})=-2 \underline{\mathrm{a}} \quad, \operatorname{div}(\underline{r} \times \underline{\mathbf{a}})=0, \operatorname{grad}(\underline{r} \circ \underline{\mathbf{a}})=\underline{\mathbf{a}}$ where $\underline{\mathrm{a}}$ is a constant vector.
Solution:
Let $\underline{r}=\underline{x} \dot{i}+y \underline{i}+z \underline{k}$ and $\underline{a}=a \underline{i}+b \underline{i}+c \underline{k}$ then,
$\Rightarrow \underline{r x a}=\left|\begin{array}{lll}\underline{i} & \underline{j} & \underline{k} \\ \mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right|=(\mathrm{yc}-\mathrm{zb}) \underline{i}+(\mathrm{az}-\mathrm{cx}) \underline{j}+(\mathrm{bx}-\mathrm{ay}) \underline{\mathrm{k}}$
Therefore, $\operatorname{curl}(\underline{r} \times \underline{a})=\left|\begin{array}{ccc}\frac{i}{i} & \frac{j}{\partial} & \frac{k}{\partial} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y c-z b & a z-c x & b x-a y\end{array}\right|=-2 \underline{a}$
$\Rightarrow \operatorname{div}(\underline{r} x \underline{a})=\frac{\partial}{\partial \mathrm{x}}(\mathrm{yc}-\mathrm{zb})+\frac{\partial}{\partial \mathrm{y}}(\mathrm{az}-\mathrm{cx})+\frac{\partial}{\partial \mathrm{z}}(\mathrm{bx}-\mathrm{ay})=0$
$\Rightarrow \underline{\mathrm{r}} \cdot \underline{\mathrm{a}}=\mathrm{ax}+\mathrm{by}+\mathrm{cz}$
$\nabla(\underline{r} \cdot \underline{a})=\nabla(\mathrm{ax}+\mathrm{by}+\mathrm{cz})=\underline{\mathrm{a}}$
$\mathbf{Q}(27)$. Show that $\operatorname{div}((\underline{r} \times \underline{a}) \times \underline{b})=0, \operatorname{Cur}((\underline{r} \times \underline{a}) \times \underline{b})=2 \underline{b} \times \underline{a}$, where $\underline{a}$ and $\underline{b}$ are constant vectors.

## Solution:

Let $\underline{\mathrm{r}}=\underline{\mathrm{x}}+\mathrm{y} \underline{\mathrm{i}}+\mathrm{zk}$ and $\underline{\mathrm{a}}=\mathrm{a} \underline{\underline{i}}+\mathrm{b} \underline{\mathrm{i}}+\mathrm{ck}$ then, and $\underline{\mathrm{b}}=\mathrm{di}+\mathrm{e} \underline{i}+\mathrm{f} \underline{\mathrm{k}}$
$\Rightarrow \underline{r x} \underline{a}=\left|\begin{array}{ccc}\underline{i} & \underline{j} & \underline{k} \\ \mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right|=(\mathrm{yc}-\mathrm{zb}) \underline{i}+(\mathrm{az}-\mathrm{cx}) \underline{j}+(\mathrm{bx}-\mathrm{ay}) \underline{\mathrm{k}}$

$$
\begin{aligned}
& \Rightarrow(\underline{\operatorname{rx}} \underline{a}) \times \underline{\mathrm{b}}=\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{\mathrm{k}} \\
\mathrm{yc}-\mathrm{zb} & \mathrm{az}-\mathrm{cx} & \mathrm{bx}-\mathrm{ay} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right| \\
& =[f(a z-c x)-e(b x-a y)] \underline{i}+[d(b x-a y)-f(y c-z b)] \underline{j}+[e((y c-z b)-d(a z-c x)] \underline{k} \\
& \Rightarrow \operatorname{div}[(\underline{\operatorname{rxa}}) \times \underline{\mathrm{b}}] \\
& =\frac{\partial}{\partial x}[f(a z-c x)-e(b x-a y)]+\frac{\partial}{\partial y}[d(b x-a y)-f(y c-z b)]+\frac{\partial}{\partial z}[e((y c-z b)-d(a z-c x)] \\
& \operatorname{curl}[(\underline{r} \times \underline{a}) \times \underline{b}]=\left|\begin{array}{ccc}
\underline{i} & \frac{j}{\partial} & \underline{\partial} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f a c-f c x-\text { ebx +eay } & \text { dbx }- \text { day }-\mathrm{fyc}+\mathrm{fzb} & \text { eyc }-\mathrm{ezb}-\mathrm{daz}+\mathrm{dcx}
\end{array}\right|=2 \underline{\mathrm{~b}} \times \underline{\mathrm{a}}
\end{aligned}
$$

$\mathbf{Q ( 2 8 )}$. (i) Expand $\operatorname{Cur}\left\{\frac{(\underline{a} \circ \mathrm{r})}{\mathrm{r}^{3}} \underline{r}\right\}$
(ii) $\operatorname{div}\left\{\frac{(\underline{a} \circ \underline{r})}{\mathrm{r}^{3}} \underline{r}\right\}$ where $\underline{\mathrm{a}}$ is a constant vector.
(iii) Show that $\operatorname{Curl}\left(\frac{\underline{\mathrm{a}} \times \underline{r}}{\mathrm{r}^{3}}\right)=\frac{\underline{a}}{\mathrm{r}^{3}}+\frac{3 \underline{r}}{\mathrm{r}^{3}}(\underline{\mathrm{a}} \circ \underline{\mathrm{r}})$

## Solution:

(i) Let $\underline{\mathrm{r}}=\underline{\mathrm{x}} \underline{i}+\mathrm{y} \underline{\mathrm{i}}+\mathrm{z} \underline{\mathrm{k}}$ and $\underline{\mathrm{a}}=\mathrm{a} \underline{\underline{i}}+\mathrm{b} \underline{i}+\mathrm{c} \underline{\mathrm{k}}$ then $(\underline{\mathrm{a}} \circ \underline{\mathrm{r}})=\mathrm{ax}+\mathrm{by}+\mathrm{cz}$

Therefore, $\frac{(\underline{a} \circ \underline{r})}{\mathrm{r}^{3}} \underline{r}=\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{r}^{3}} \underline{r}$

$$
\begin{aligned}
& \operatorname{curl} \frac{(\underline{a} \circ \underline{r})}{\mathrm{r}^{3}} \underline{r}=\operatorname{cur}\left(\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{r}^{3}} \underline{r}\right)=\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{r}^{3}} \operatorname{curl} \underline{\underline{r}}+\nabla\left(\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{r}^{3}}\right) \times \underline{\mathrm{r}} \\
& =0+\nabla\left(\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{r}^{3}}\right) \times \underline{r} \\
& =\left\{(\mathrm{ax}+\mathrm{by}+\mathrm{cz}) \nabla\left(\frac{1}{\mathrm{r}^{3}}\right)+\frac{1}{\mathrm{r}^{3}} \nabla(\mathrm{ax}+\mathrm{by}+\mathrm{cz})\right\} \times \underline{\mathrm{r}} \\
& =\left\{(\mathrm{ax}+\mathrm{by}+\mathrm{cz}) \frac{(-\underline{\mathrm{r}})}{\mathrm{r}^{5}}+\frac{1}{\mathrm{r}^{3}} \underline{\mathrm{a}}\right\} \times \underline{\mathrm{r}} \\
& =\frac{\mathrm{a} \times \underline{\mathrm{r}}}{\mathrm{r}^{3}}
\end{aligned}
$$

$$
\operatorname{div} \frac{(\underline{a} \circ \underline{r})}{\mathrm{r}^{3}} \underline{\mathrm{r}}=\operatorname{div}\left(\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{r}^{3}} \underline{\mathrm{r}}\right)=\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{r}^{3}} \operatorname{div} \underline{r}+\nabla\left(\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{r}^{3}}\right) \cdot \underline{r}
$$

(ii)

$$
=\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{r}^{3}} 3+\nabla\left(\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{r}^{3}}\right) \cdot \underline{\mathrm{r}}
$$

$$
\begin{aligned}
& =\frac{3(a x+b y+c z)}{r^{3}}+\left\{(a x+b y+c z) \nabla\left(\frac{1}{r^{3}}\right)+\frac{1}{r^{3}} \nabla(a x+b y+c z)\right\} \cdot \underline{r} \\
& =\frac{3(a x+b y+c z)}{r^{3}}+\left\{(a x+b y+c z) \frac{(-3 \underline{r})}{r^{5}}+\frac{1}{r^{3}} \underline{a}\right\} \cdot \underline{r} \\
& =\frac{\underline{a} \cdot \underline{r}}{r^{3}}
\end{aligned}
$$

(iii) $\Rightarrow \underline{\operatorname{axx}} \underline{\underline{r}}=\left|\begin{array}{lll}\underline{\mathrm{i}} & \underline{j} & \underline{k} \\ \mathrm{a} & \underline{b} & \mathrm{c} \\ \mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right|=(\mathrm{bz}-\mathrm{cy}) \underline{i}+(\mathrm{cx}-\mathrm{az}) \underline{\mathrm{j}}+(\mathrm{ay}-\mathrm{bx}) \underline{\mathrm{k}}$

Use the results, $\operatorname{curl}(\phi \underline{\mathrm{A}})=\phi \operatorname{curl}(\underline{\mathrm{A}})+\nabla \phi \times \underline{\mathrm{A}}$ and $\nabla \mathrm{f}(\mathrm{r})=\frac{\mathrm{df}}{\mathrm{dr}} \underline{\underline{r}}$

$$
\begin{aligned}
& \operatorname{curl}(\underline{a} \times \underline{r})=\left|\begin{array}{ccc}
\frac{\mathrm{i}}{\partial} & \frac{\mathrm{j}}{2} & \frac{\underline{k}}{\partial} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-(y c-z b) & -(a z-c x) & -(b x-a y)
\end{array}\right|=2 \underline{a} \\
& \operatorname{Curl}\left(\frac{\underline{\mathrm{a}} \times \underline{\mathrm{r}}}{\mathrm{r}^{3}}\right)=\frac{\operatorname{curl}(\underline{a} \times \underline{\mathrm{r}})}{\mathrm{r}^{3}}+\nabla\left(\frac{1}{\mathrm{r}^{3}}\right) \times(\underline{\mathrm{a}} \times \underline{\mathrm{r}}) \\
& =\frac{2 \underline{\mathrm{a}}}{\mathrm{r}^{3}}+\nabla\left(\frac{1}{\mathrm{r}^{3}}\right) \times(\underline{\mathrm{a}} \times \underline{\mathrm{r}}) \\
& =\frac{2 \underline{a}}{\mathrm{r}^{3}}+\left(-\frac{3 \underline{r}}{\mathrm{r}^{5}}\right) \times(\underline{\mathrm{a}} \times \underline{\mathrm{r}}) \\
& =\frac{2 \underline{a}}{\mathrm{r}^{3}}+\left(-\frac{3}{\mathrm{r}^{5}}\right) \underline{\mathrm{r}} \times(\underline{\mathrm{a}} \times \underline{\mathrm{r}})=\frac{2 \underline{\mathrm{a}}}{\mathrm{r}^{3}}+\left(-\frac{3}{\mathrm{r}^{5}}\right)\left[\mathrm{r}^{2} \underline{\mathrm{a}}-(\underline{\mathrm{r}} \cdot \underline{\mathrm{a}}) \underline{\mathrm{r}}\right.
\end{aligned}
$$

$\mathbf{Q ( 2 9 )}$. If $\underline{\mathrm{a}}$ and $\underline{\mathrm{b}}$ are constant vectors and $\alpha$ is a scalar quantity satisfy a vector equation $\alpha \underline{x}+\underline{a} \times \underline{x}=\underline{b}$, solve the vector equation for $\underline{x}$ for $\left\{\begin{array}{l}\alpha \neq 0 \\ \alpha=0\end{array}\right.$

When $\alpha \neq 0$

## Solution:

$$
\begin{equation*}
\alpha \underline{\mathrm{x}}+\underline{\mathrm{a}} \times \underline{\mathrm{x}}=\underline{\mathrm{b}} \tag{1}
\end{equation*}
$$

$\underline{\mathrm{a}} \times(1) \Rightarrow \alpha \underline{\mathrm{a}} \times \underline{\mathrm{x}}+\underline{\mathrm{a}} \times(\underline{\mathrm{a}} \times \underline{\mathrm{x}})=\underline{\mathrm{a}} \times \underline{\mathrm{b}}$
$\underline{\mathrm{a}} \cdot(1) \Rightarrow \alpha \underline{\mathrm{a}} \cdot \underline{\mathrm{x}}+\underline{\mathrm{a}} \cdot(\underline{\mathrm{a}} \times \underline{\mathrm{x}})=\underline{\mathrm{a}} \cdot \underline{\mathrm{b}}$
From (1) $\quad \Rightarrow \alpha \underline{a} \times \underline{x}+(\underline{a} \cdot \underline{x}) \underline{a}-(\underline{a} \cdot \underline{a}) \underline{x}=\underline{a} \times \underline{b}$
From (3) $\Rightarrow \alpha \underline{a} \cdot \underline{x}=\underline{a} \cdot \underline{b}$ and $\quad \underline{a} \cdot \underline{x}=\frac{\underline{a} \cdot \underline{b}}{\alpha}$
From (4) and (5) $\Rightarrow \alpha(\underline{b}-\alpha \underline{x})+\frac{(\underline{a} \cdot \underline{\mathrm{~b}})}{\alpha} \underline{\mathrm{a}}-(\underline{\mathrm{a}} \cdot \underline{\mathrm{a}}) \underline{\mathrm{x}}=\underline{\mathrm{a}} \times \underline{\mathrm{b}}$

$$
\Rightarrow \quad \underline{\underline{x}=\frac{\underline{a} \times \underline{b}-\frac{(\underline{a} \cdot \underline{b})}{\alpha} \underline{a}-\alpha \underline{b}}{\alpha^{2}+a^{2}}}
$$

When $\alpha=0$
$\underline{\mathrm{a}} \times \underline{\mathrm{x}}=\underline{\mathrm{b}}$
$\underline{\mathrm{a}} \times(1) \Rightarrow \underline{\mathrm{a}} \times(\underline{\mathrm{a}} \times \underline{\mathrm{x}})=\underline{\mathrm{a}} \times \underline{\mathrm{b}}$
From (1) $\quad \Rightarrow(\underline{a} \cdot \underline{x}) \underline{a}-(\underline{a} \cdot \underline{a}) \underline{x}=\underline{a} \times \underline{b}$
Let $\Rightarrow(\underline{a} \cdot \underline{x})=\mathrm{t}($ parameter $)$
$\mid$ From (3) $\Rightarrow \quad \underline{\mathrm{x}}=\frac{\underline{\mathrm{t}} \underline{\mathbf{a}}-\underline{\mathrm{a}} \times \underline{\mathrm{b}}}{\mathrm{a}^{2}}$
$(5,2,0),(2,1,3)$ and $(4,1,-1)$

