SYSTEM OF LINEAR EQUATIONS

MODEL QUESTIONS WITH SOLUTIONS
$\mathbf{Q (1) .}$. Show that there is only one value of k for which the system of equations

$$
\begin{aligned}
2 x+y- & z
\end{aligned}=0, ~ \begin{aligned}
2 x-2) x+k y+2 z & =0 \\
6 x+3 y+(k-1) z & =0
\end{aligned}
$$

has non trivial solution. Solve the system of equations for this value of k.

Solution:

$$
\begin{gathered}
\text { Let } \\
R_{3} \rightarrow-3 R_{1}+R_{3}\left(\begin{array}{ccc}
2 & 1 & -1 \\
k-2 & k & 2 \\
6 & 3 & k-1
\end{array}\right) \\
\left(\begin{array}{ccc}
2 & 1 & -1 \\
k-2 & k & 2 \\
0 & 0 & k+2
\end{array}\right)
\end{gathered}
$$

When $k+2 \neq 0 \quad \mathrm{r}(\mathrm{A})=3$
Therefore, System has no solution.

$$
\text { If } \mathrm{k}=-2
$$

$$
\left(\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -2 & 2 \\
0 & 0 & 0
\end{array}\right) \quad \mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{1}+\mathrm{R}_{2}
$$

$$
\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \therefore r(A)=1
$$

$$
\therefore 2 x+y-z=0
$$

$$
\text { Let } y=\alpha, z=\beta \text { (z is Free variables) }
$$

$$
x=\frac{\beta-\alpha}{3}(x \text { is leading variable })
$$

Q (2) Find the rank of the coefficient matrix and the augmented matrix of the system of the system of equations

$$
\begin{aligned}
x+2 y+3 z & =1 \\
2 x+y-z & =16 \\
x+5 y+a z & =b
\end{aligned}
$$

where a and b are two parameters. Hence find the value of a and b for the system of equations has (1) No solution
(ii) Exactly one solution
(iii) Infinitely many solutions.

Solve the system of equations for which $a=8$ and $b=-3$

Solution:

$$
(\mathrm{A} / \mathrm{b})=\left(\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
2 & 1 & -1 & 16 \\
1 & 5 & \mathrm{a} & \mathrm{~b}
\end{array}\right)
$$

$R_{3} \rightarrow-R_{1}+R_{3}$
$R_{2} \rightarrow-2 R_{1}+R_{2}$$\left(\begin{array}{ccc|c}1 & 2 & 3 & 1 \\ 0 & -3 & -7 & 14 \\ 0 & 3 & \mathrm{a}-3 & \mathrm{~b}-1\end{array}\right)$
$R_{3} \rightarrow-R_{2}+R_{3}\left(\begin{array}{ccc|c}1 & 2 & 3 & 1 \\ 0 & -3 & -7 & 14 \\ 0 & 0 & a-10 & b+13\end{array}\right)$
When $a \neq 10 \quad \mathrm{r}(\mathrm{A} / \mathrm{b}=3), \quad$ and $\quad \mathrm{r}(\mathrm{A})=3)$
\therefore System is consistent and system has unique solution.
When $a=10, \quad b-13$, then
$\mathrm{r}(\mathrm{A})=2, \quad \mathrm{r}(\mathrm{A} / \mathrm{b})=3$
\therefore System is In consistent and system no solution.
When $a=10, \quad b=-13, \quad$ then
$r(A)=2, \quad r(A / b)=2 \therefore$ System is consistent and system has many solutions.
If $\mathrm{a}=8, \mathrm{~b}=-3$

Reduce matrix becomes

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & -3 & -7 & 14 \\
0 & 0 & 2 & 10
\end{array}\right) \\
& \left.\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -7
\end{array}\right)\binom{x}{0}=\begin{array}{c}
1 \\
0
\end{array}\right)=\begin{array}{r}
14 \\
z
\end{array} \\
& -2 z=10 \Rightarrow z=-5 \\
& -3 y-7 z=+14 \Rightarrow y=3 \\
& x+2 y+3 z=1 \Rightarrow x=10
\end{aligned}
$$

Q 3. State whether each of the following systems is either "determined", `underdetermined' or `overdetermined'. Then reduce the augmented matrix to its echelon form using elementary row transformations (i.e. implement the method of Gaussian elimination). Hence determine which systems are `consistent' (in which case either state the 'unique solution' if there is one, or classify the set of infinite solutions) or 'not consistent' (there is no solution).
$x \quad-y+2 z=-2$
(a) $3 x-2 y+4 z=-5$
$2 y-3 z=2$
$2 x+2 y+z=2$
(c) $-x+y-2 z=-5$
$x-3 y-z=4$
$-3 w+x-2 y+13 z=-3$
(e) $2 \mathrm{w}-3 \mathrm{x}+\mathrm{y}-8 \mathrm{z}=2$

$$
w+4 x+3 y-9 z=1
$$

Solution: (a)

$$
\left(\begin{array}{ccc}
1 & -1 & 2 \\
3 & -2 & 4 \\
0 & 2 & -3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\begin{gathered}
2 \\
2
\end{gathered}
$$

System is determined since three are 3 variables and 3 equations
Suppose augment matrix

$$
\begin{aligned}
& (\mathrm{A} / \mathrm{b})\left(\begin{array}{ccc|c}
1 & -1 & 2 & -2 \\
3 & -2 & 4 & -5 \\
0 & 2 & -3 & 2
\end{array}\right) \\
& \mathrm{R}_{3} \rightarrow-2 \mathrm{R}_{1}+\mathrm{R}_{2}\left(\begin{array}{ccc|c}
1 & -1 & -2 & -2 \\
0 & 1 & -2 & 1 \\
0 & 2 & -3 & 2
\end{array}\right) \\
& R_{3} \rightarrow-2 R_{1}+R_{3}\left(\begin{array}{ccc|c}
1 & -1 & -2 & -2 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \text { This is the Echelon from of matrix and } \\
& \mathrm{r}(\mathrm{~A})=3, \quad \mathrm{r}(\mathrm{~A} / \mathrm{b})=3
\end{aligned}
$$

\therefore System is consistent and has unique solution.

$$
\left(\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right) \quad \begin{aligned}
& z=0 \\
& y-2 z=1, \quad y=1 \\
& x-y+2 z=-2, \quad x=-1
\end{aligned}
$$

(b) System is determined
$(\mathrm{A} / \mathrm{b})=\left(\begin{array}{ccc|c}1 & -2 & 2 & -3 \\ 2 & 1 & -3 & -8 \\ -1 & 3 & -2 & -5\end{array}\right)$
$R_{3} \rightarrow-2 R_{1}+R_{2}$
$R_{3} \rightarrow R_{1}+R_{3}$$\left(\begin{array}{ccc|c}1 & -2 & 2 & -3 \\ 0 & 5 & -7 & 14 \\ 0 & 1 & 4 & -8\end{array}\right)$
$\mathbf{R}_{2} \longleftrightarrow \mathbf{R}_{3}\left(\begin{array}{ccc|c}1 & -2 & 2 & -3 \\ 0 & 1 & 4 & -8 \\ 0 & 21 & -7 & 14\end{array}\right)$ This is the Echelon from, $\quad r=(A)=3, r(A / b)=3$
\therefore System is consistent and system has unique solution

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & -2 & 2 \\
0 & 1 & 4 \\
0 & 0 & -27
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-3 \\
-8 \\
54
\end{array}\right) \\
& -27 z=54 \Rightarrow z=-2 \\
& y+4 z=-8 \Rightarrow y=0 \\
& x-2 y+2 z=-3 \Rightarrow x=1
\end{aligned}
$$

(c)

$$
\left(\begin{array}{ccc}
2 & 2 & 1 \\
-1 & 1 & -2 \\
1 & -3 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
-5 \\
4
\end{array}\right)
$$

Now system is determined.
Now define augmented matrix (A / b)

$$
\begin{aligned}
& (A / b)=\left(\begin{array}{ccc|c}
2 & 2 & 2 & 2 \\
-1 & 1 & -2 & -5 \\
1 & -3 & -1 & 4
\end{array}\right) R_{1} \longleftrightarrow-2 R_{2} \\
& \left(\begin{array}{ccc|c}
1 & -3 & -1 & 4 \\
-1 & 1 & -2 & -5 \\
2 & 2 & 1 & 2
\end{array}\right) \begin{array}{l}
R_{2} \rightarrow R_{1}+R_{2} \\
R_{3} \rightarrow-2 R_{1}+R_{3}
\end{array}
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & -1 & 4 \\
0 & -2 & -3 & -1 \\
0 & 8 & 3 & -6
\end{array}\right) R_{3} \rightarrow 4 R_{2}+R_{3}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & -1 & 4 \\
0 & -2 & -3 & -1 \\
0 & 0 & -9 & -10
\end{array}\right) \text { This is the Echelon from, } \mathrm{r}=(\mathrm{A})=3, \mathrm{r}(\mathrm{~A} / \mathrm{b})=3
$$

\therefore System is consistent and system has unique solution

$$
\begin{aligned}
& \left(\begin{array}{ccc}
12 & -3 & -1 \\
0 & -2 & -3 \\
0 & 0 & -9
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
4 \\
-1 \\
-10
\end{array}\right) \\
& 9 z \quad=10, \quad z=10 / 9 \\
& -2 y-3 z=-1, y \quad y=-7 / 6 \\
& x-3 y-z=4 \quad x=\frac{29}{18}
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
3 & 1 & 1 \\
3 & -1 & 2 \\
1 & 1 & 1 \\
-2 & 2 & -3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
8 \\
3 \\
6 \\
-7
\end{array}\right)
$$

System is over determined.

$$
\begin{aligned}
& (A / b)=\left(\begin{array}{ccc|c}
3 & 1 & 1 & 8 \\
3 & -1 & 2 & 3 \\
1 & 1 & 1 & 6 \\
-2 & 2 & -3 & -7
\end{array}\right) \quad R_{1} \longleftrightarrow-2 R_{3} \\
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
3 & 1 & 1 & 8 \\
3 & -1 & 2 & 3 \\
-2 & 2 & -3 & -7
\end{array}\right) \begin{array}{l}
R_{2} \rightarrow 3 R_{1}+R_{2} \\
R_{3} \rightarrow-3 R_{1}+R_{3} \\
R_{4} \rightarrow 2 R_{1}+R_{4}
\end{array} \\
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & -2 & -2 & -10 \\
0 & -4 & -1 & -15 \\
0 & 4 & -1 & 5
\end{array}\right) \begin{array}{l}
R_{3} \rightarrow-2 R_{2}+R 4 \\
R_{4} \rightarrow 2 R_{2}+R_{4}
\end{array} \\
& \left(\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -2 & -2 & -10 \\
0 & 0 & 3 & 5 \\
0 & 0 & -5 & -15
\end{array}\right) \begin{array}{l}
\\
R_{3} \rightarrow-2 R_{2}+R 4 \\
R_{4} \rightarrow R_{3}+R_{4}
\end{array}
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -2 & -2 & -10 \\
0 & 0 & 3 & 5 \\
0 & 0 & 0 & 0
\end{array}\right) \text { This is the Echelon from, } \quad r=(A)=3, \quad r(A / b)=3
$$

\therefore System is consistent and system has unique solution

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & -2 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
6 \\
-10 \\
5
\end{array}\right) \\
& 3 z=5 \Rightarrow z=5 / 3 \\
& -2 y-2 z=-10 \\
& y+z=5 \Rightarrow y=10 / 3 \\
& x+y+z=6 \Rightarrow x=1
\end{aligned}
$$

(e)

$$
\left(\begin{array}{cccc}
-3 & 1 & -2 & 13 \\
2 & -3 & 1 & -8 \\
1 & 4 & 3 & -9
\end{array}\right)\left(\begin{array}{l}
u \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right)
$$

Solution is under determined sine three are 4 variables and have 3 equations.

$$
\begin{aligned}
& \operatorname{define}(\mathrm{A} / \mathrm{b})=\left(\left.\begin{array}{ccc||c}
-3 & 1 & -2 & 13 \\
2 & -3 & 1 & -8 \\
1 & 4 & 3 & -9
\end{array} \right\rvert\, \begin{array}{c}
1
\end{array}\right) \\
& R_{1} \longleftrightarrow R_{3}\left(\begin{array}{cccc}
1 & 4 & 3 & -9 \\
2 & -3 & 1 & -8 \\
-3 & 1 & -2-13
\end{array}\right) \\
& \left(\begin{array}{ccccc}
1 & 4 & 3 & -9 & 1 \\
0 & -11 & -5 & 10 & 0 \\
0 & 13 & 7 & 14 & -10
\end{array}\right) \mathrm{R}_{2} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}\left(\begin{array}{ccccc}
1 & 4 & 3 & -9 & 1 \\
0 & 2 & 2 & 24 & -10 \\
0 & 13 & 7 & 14 & -10
\end{array}\right) \mathrm{R}_{2} \rightarrow 7 \mathrm{R}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & 4 & 3 & -9 & 1 \\
0 & 14 & 14 & 168 & -70 \\
0 & 13 & 7 & 14 & -10
\end{array}\right) \mathrm{R}_{2} \rightarrow-\mathrm{R}_{3}+\mathrm{R}_{2} \\
& \left(\begin{array}{ccccc}
1 & 4 & 3 & -9 & 1 \\
0 & 1 & 7 & 154 & -60 \\
0 & 13 & 7 & 14 & -10
\end{array}\right) \mathrm{R}_{3} \rightarrow-13 \mathrm{R}_{2}+\mathrm{R}_{3} \\
& \left(\begin{array}{ccccc}
1 & 4 & 3 & -9 & 1 \\
0 & 1 & 7 & 154 & -60 \\
0 & 13 & 7 & 14 & -10
\end{array}\right) \mathrm{R}_{3} \rightarrow-13 \mathrm{R}_{2}+\mathrm{R}_{3} \\
& \left(\begin{array}{lllll}
1 & 4 & 3 & -9 & 1 \\
0 & 1 & 7 & 154 & -60 \\
0 & 0 & 84 & -1988 & 770
\end{array}\right) \text { This is the Echelon form } \\
& r(A)=3,
\end{aligned} r(A / b)=3 \therefore \text { System is consistent and has many solutions. } \quad .
$$

Q(4) Solve the following systems of equations using Gaussian elimination. For what values of b are these systems consistent?
(a) $\begin{aligned} x-2 y+2 z & =-3 \\ 2 x+y-3 z & =8 \\ 9 x-3 y-3 z & =b\end{aligned}$

$$
2 x+3 y=7
$$

$$
9 x-3 y-3 z=b
$$

(b)
$x-y=1$
$b x+2 y=8$

Solution: (a)

$$
\left(\begin{array}{ccc}
1 & -2 & 2 \\
2 & 1 & -2-3 \\
9 & -3 & -3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-3 \\
8 \\
b
\end{array}\right)
$$

Define augmented matrix (A/b)

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & -2 & 2 & -3 \\
2 & +1 & -3 & 8 \\
9 & -3 & -3 & \mathrm{~b}
\end{array}\right) \mathrm{R}_{2} \rightarrow-2 \mathrm{R}_{3}+\mathrm{R}_{2} \\
& \mathrm{R}_{3} \rightarrow-9 \mathrm{R}_{1}+\mathrm{R}_{3}
\end{aligned}\left(\begin{array}{cccc}
1 & -2 & 2 & -3 \\
2 & 5 & -7 & 14 \\
0 & 15 & -2127+b
\end{array}\right) \mathrm{R}_{3} \rightarrow-3 \mathrm{R}_{2}+\mathrm{R}_{3} .
$$

$\left(\begin{array}{ccc|c}1 & -2 & 2 & -3 \\ 2 & 5 & -7 & +4 \\ 0 & 15 & -21 & b-15\end{array}\right)$ This is the Echelon form of matrix
when $\mathrm{b}-15 \neq 0 \quad \mathrm{r}(\mathrm{A} / \mathrm{b})=3, \mathrm{r}(\mathrm{A})=2$
when $\mathrm{b}=15, \mathrm{r}(\mathrm{A})=2, \mathrm{r}(\mathrm{A} / \mathrm{b})=2$
System is consistent and has many solutions.
$5 \mathrm{y}-7 \mathrm{z}=14$
$X-2 y+2 e=-3$
Let $\mathrm{z}=\mathrm{t}(\mathrm{t}$ is a paramater $)$
$y=\frac{14+7 t}{5}$
$x=\underline{\underline{\frac{13+4 t}{5}}}$
(b)
$\left(\begin{array}{cc}2 & 2 \\ 1 & -1 \\ b & +2\end{array}\right)\binom{x}{y}=\left(\begin{array}{l}7 \\ 1 \\ 8\end{array}\right)$
Define $r(A / b)=\left(\begin{array}{cc|c}2 & 2 & 7 \\ 1 & -1 & 1 \\ b & 2 & 8\end{array}\right)$
$R_{2} \rightarrow-2 R_{1}+R_{2}\left(\begin{array}{cc|c}1 & -1 & 1 \\ 0 & 4 & 5 \\ 0 & \mathrm{~b}+2 & 8-\mathrm{b}\end{array}\right)$
$R_{2} \rightarrow-\frac{1}{4} R_{2}\left(\begin{array}{cc|c}1 & -1 & 1 \\ 0 & 1 & 5 / 4 \\ 0 & \mathrm{~b}+2 & \frac{11}{2}-13 \frac{\mathrm{~b}}{4}\end{array}\right)$
This is the Echelon form of matrix and $r(A)=2 \quad r(A / b)=3$ of $\frac{11}{2}-\frac{13 b}{4} \neq 0 \Rightarrow 13 b-22 \neq 0 \Rightarrow b \neq \frac{22}{13}$

When $13 \mathrm{~b}-22=0$, then $r(A)=r(a / b)=2$ system is consistent and has unique solution.

