3 DIMENSIONAL GEOMETRY

Model Questions With Solutions

$\mathbf{Q (1)}$. Find the equations of the line joining $(1,2,3)$ and $(-3,4,3)$ and show that it is perpendicular to Z axis

Solution: Equation of st : line $\frac{x-1}{4}=\frac{y-2}{-2}=\frac{z-3}{0}=t$, a vector parallel to the line is $\underline{\mathrm{n}}=4 \underline{\mathrm{i}}-2 \underline{\mathrm{j}}$. Therefore $\underline{\mathrm{n}} \cdot \underline{\mathrm{k}}=0$, hence line is normal to z axis.

Q(2). Find the equation of the line bisecting the angle between the lines $\frac{x-3}{2}=\frac{y+4}{-1}=\frac{z-5}{-2}, \quad \frac{x-3}{4}=\frac{y+4}{-12}=\frac{z-5}{3}$

Solution: Let \underline{t}_{1} and \underline{t}_{2} be parallel vectors to the given two lines L_{1} and L_{2} respectively.

Line L_{l}
$\underline{\mathrm{t}_{1}}=4 \underline{\mathrm{i}}-122_{\underline{1}} \mathrm{j}+3_{1} \underline{\mathrm{k}}$ and $\underline{\mathrm{t}_{2}}=2 \underline{\mathrm{i}}-\underline{\mathrm{j}}-2 \underline{\mathrm{k}}$
Therefore unit vector parallel to the same lines are $\frac{2 \underline{i}-\underline{j}-2 \underline{k}}{13}$ and $\frac{4 \underline{i}-12_{1} \underline{j}+3_{1} \underline{k}}{3}$
Hence vector along the lines of bisectors
$\frac{2 \underline{i}-\underline{j}-2 \underline{k}}{13} \pm \frac{4 \underline{i}-12 \underline{j}+3 \underline{k}}{3}$ i.e, $\frac{38 \underline{i}-49 \underline{j}-17 \underline{k}}{39}$ and $\frac{14 \underline{i}+23 \underline{j}-35 \underline{k}}{39}$
\therefore Equations of bisectors through lines are $\frac{\mathrm{x}-3}{38}=\frac{\mathrm{y}+4}{-49}=\frac{\mathrm{z}-5}{-17}=\mathrm{t}$ and
$\frac{x-3}{14}=\frac{y+4}{23}=\frac{z-5}{-35}=k$.
Q(3) Show that the lines $\frac{x+3}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{5}=\frac{z-6}{7}$ intersect and find the co-ordinates of the point of intersection

Solution

Suppose two lines L_{1} and L_{2} intersect, then lines L_{1} and L_{2} are coplanar lines.
Let $\underline{t}_{1} \underline{t}_{1}$ and \underline{t}_{2} be parallel vectors to the given two lines L_{1} and L_{2} respectively.
Therefore $\underline{\mathrm{t}}_{1}, \underline{\mathrm{t}}_{2}$ and
$\overrightarrow{\mathrm{BD}}$ are also coplanar vectors. Where $\overrightarrow{\mathrm{BD}}=5 \underline{\mathrm{i}}+7 \underline{\mathrm{j}}+11 \underline{\mathrm{k}}$
$\Rightarrow\left(\underline{\mathrm{t}}_{1} \times \underline{\mathrm{t}}_{2}\right) \cdot \overrightarrow{\mathrm{BD}}=0$

Line L_{2}
$\left|\begin{array}{ccc}3 & 5 & 7 \\ 1 & 5 & 7 \\ 5 & 7 & 11\end{array}\right| \neq 0 \therefore$ lines L_{1} and L_{2} are not coplanar and point of intersection does not
exists.
$Q(4)$. Find the equations of the perpendicular from $(1,0,-3)$ to the line

$$
\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}
$$

Solution: Let a line through $(1,0,3)$ which is perpendicular to he vector $3 \underline{i}+4 \underline{j}+5 \underline{k}$ can be written as in the form $\frac{x-1}{l}=\frac{y-0}{m}=\frac{z+3}{n}=k$ with $\underline{i}+m \underline{j}+n \underline{k}$ normal to $3 \underline{i}+4 \underline{j}+5 \underline{k}$
$\therefore 31+4 m+5 n=0$ One can choose arbitrarily $1, m, n$ values so that $31+4 m+5 n=0$ i.e, $\mathrm{l}=4, \mathrm{~m}=-3, \mathrm{n}=0$ or $\mathrm{l}=2, \mathrm{~m}=6, \mathrm{n}=-6$

$$
\frac{\mathrm{x}-1}{4}=\frac{\mathrm{y}-0}{-3}=\frac{\mathrm{z}+3}{0}=\mathrm{t} \quad \text { or } \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-0}{6}=\frac{\mathrm{z}+3}{-6}=\mathrm{k}
$$

Q(5). Find the co-ordinates of the foot of the perpendicular from $\mathrm{P}(1,2,3)$ to the line $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{3}$ Find the length of the perpendicular and its equations

Solution: Coordinates of the foot of the perpendicular $\left(\frac{19}{7}, \frac{17}{7}, \frac{15}{7}\right)$

Q(6) Find the points on the lines $\frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1}$ and $\frac{x}{-3}=\frac{y+9}{2}=\frac{z-2}{4}$ which are nearest to each other. Hence find the shortest distance between the lines and its equation..

Solution: coordinates of the nearest points are $(3,8,3),(-3,-7,6)$, shortest
distance $=\sqrt{270}$, Equation of the shortest distance is $\frac{x-3}{6}=\frac{y-8}{15}=\frac{z-3}{3}=k$.

Q(7). Find the shortest distance between the lines $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ and $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$.
Solution shortest distance between two lines $=2 \sqrt{29}$,
$\mathbf{Q (8)}$. Prove that the shortest distance between the diagonal of the rectangular parallelepiped and the edges not meeting it are $\frac{b c}{\sqrt{b^{2}+c^{2}}}, \frac{c a}{\sqrt{a^{2}+c^{2}}}, \frac{a b}{\sqrt{b^{2}+a^{2}}}$ where a, b, and c are length of the edges.
$\mathbf{Q}(9)$. Find a vector normal (perpendicular) to the plane of $\mathrm{P}(1,-1,0), \mathrm{Q}(2,1,-1)$ and $\mathrm{R}(-1,1$, 2).

Solution A vector normal to the plane is $6 \underline{i}+6$.
$\mathbf{Q}(\mathbf{1 0})$.Find the vector equation of the line through the point with position vector $2 \underline{i}-\underline{j}-3 \underline{k}$ which is parallel to the vector $\underline{i}+\dot{j}+\underline{k}$. Determine the points corresponding to $\lambda=3,0,2$ in the resulting equation

Solution: A vector equation of the line is $\underline{\mathrm{r}}=2 \underline{\mathrm{i}}-\underline{\mathrm{j}}-3 \underline{\mathrm{k}}+\lambda(\underline{\mathrm{i}}+\underline{\mathrm{j}}+\underline{\mathrm{k}})$ and the corresponding points are $\lambda=0, \underline{\mathrm{r}}=2 \underline{\mathrm{i}}-\underline{\mathrm{j}}-3 \underline{\mathrm{k}}$

$$
\begin{aligned}
& \lambda=3, \underline{\mathrm{r}}=5 \underline{\mathrm{i}}+2 \underline{\mathrm{j}}) \\
& \lambda=2, \underline{\mathrm{r}}=4 \underline{\mathrm{i}}+\underline{\mathrm{j}}-\underline{\mathrm{k}})
\end{aligned}
$$

Q(1).

Solution:

Angle between the lines is (i) $\theta=\cos ^{-1}\left(-\frac{1}{6}\right)$ (ii) $\theta=\frac{\pi}{2}$, (iii) $\theta=\cos ^{-1}\left(\frac{4}{21}\right)$
$\mathbf{Q (2) . ~ F i n d ~ t h e ~ s h o r t e s t ~ d i s t a n c e ~ b e t w e e n ~ t h e ~ l i n e s ~} \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ and
$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$.
$\underline{\mathrm{a}}=4 \underline{\mathrm{i}}+6 \underline{\mathrm{i}}+2 \underline{\mathrm{k}}, \underline{\mathrm{b}}=3 \underline{\mathrm{i}}+10 \underline{\mathrm{i}}+5 \underline{\mathrm{k}}$, and $\quad \underline{\mathrm{c}}=-4 \underline{\mathrm{i}}+5 \underline{\mathrm{i}}+5 \underline{\mathrm{k}}$
$(\underline{a} \times \underline{b}) \cdot \underline{c}=\left|\begin{array}{ccc}4 & 6 & 2 \\ 3 & 10 & 5 \\ -4 & 5 & 5\end{array}\right|=0$ Therefore, $(\underline{a} \times \underline{b}) \cdot \underline{c}=0$ implies that these four points
are coplanar.
$\mathbf{Q}(3)$. Equation of the plane is $9 \mathrm{x}+8 \mathrm{y}-3 \mathrm{z}=38$.
$\mathbf{Q}(4)$. Equations of the plane are (i) $x+5 y-6 z=-19$. (ii) $5 x-6 y+7 z=20$,
(iii) $\mathrm{x}+\mathrm{y}+\mathrm{z}=9$.
$\mathbf{Q (5) .}$ Equation of the plane is $71 x+19 y-16 z=57$.
Q(6). (i) Equation of st : line $\frac{x-1}{4}=\frac{y-2}{-2}=\frac{z-3}{0}=t$, a vector parallel to the line is $\underline{\mathrm{n}}=4 \underline{\mathrm{i}}-2 \underline{\mathrm{j}}$. Therefore $\underline{\mathrm{n}} \cdot \underline{\mathrm{k}}=0$, hence line is normal to z axis.
(ii) Distance between two points is 13 .
$\mathbf{Q (7) .}$ Equation of st : line $\frac{x+1}{1}=\frac{y-3}{2}=\frac{z-2}{2}=t$, coordinates of the foot is $\left(\frac{-5}{3}, \frac{5}{3}, \frac{2}{3}\right)$ Image point is $\left(\frac{34}{11}, \frac{65}{11}, \frac{-8}{11}\right)$.

Q(9). Equations of bisectors through lines are $\frac{x-3}{38}=\frac{y+4}{-49}=\frac{z-5}{-17}$ and $\frac{x-3}{14}=\frac{y+4}{23}=\frac{z-5}{-35}$
$\mathbf{Q}(10)$. Symmetrical equation of line of projection is $\frac{x-1 / 3}{10}=\frac{y}{78}=\frac{z+1 / 3}{2}$
Q(11) (i) Equation of plane is $-3 x+y+4 z=11$. (ii) Angle between lines is
$\theta=\cos ^{-1}\left(\frac{7}{\sqrt{14 \times 101}}\right)$
$\mathbf{Q (1 4) .}$ Equation of st : line $\frac{x}{4}=\frac{y}{21}=\frac{z}{-7}=t$.

