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3 DIMENSIONAL GEOMETRY 

 

Model Questions With Solutions 

Q(1). Find the equations of  the line joining  (1,2,3) and (-3,4,3) and show that it is 

perpendicular to  Z axis 

Solution:  Equation of st : line t
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is j2i4n  . Therefore 0kn  , hence  line is normal to z axis. 

 

Q(2). Find the   equation of the line bisecting the angle  between the lines 
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Solution:  Let 
1t  and 

2t  be parallel vectors to the given two lines L1 and L2 

respectively. 

 

k3j12i4t 111    and k2ji2t 2   

Therefore unit vector  parallel to  the same lines are  
13

k2ji2 
 and 

3

k3j12i4 11   

Hence vector along the lines of bisectors  
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Equations of bisectors through  lines are  t
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Q(3) Show  that the lines  
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find  the co-ordinates of the point of intersection 

Solution  

Suppose  two lines L1 and L2  intersect, then lines L1 and L2  are coplanar lines.  

Let 
1t  

1t and 
2t  be parallel vectors to the given two lines L1 and L2 respectively. 

Therefore 
1t , 2t and  

BD  are also coplanar vectors. Where k11j7i5BD   

0BD)tt( 21   
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   lines L1 and L2  are  not coplanar and point of intersection does not 

exists.  
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Q(4). Find the equations of the perpendicular from (1, 0, -3) to the line 
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Solution: Let a line through (1,0,3) which is perpendicular to he vector k5j4i3   

can be written as in the form  k
n
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 with knjmil   normal to 

k5j4i3   

 0n5m4l3   One can choose arbitrarily l, m, n values so that 0n5m4l3   

i.e, l =4, m =-3 , n=0   or l = 2, m =6, n  = -6 
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Q(5). Find the co-ordinates of the foot of the perpendicular from  P(1, 2, 3) to the line 
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 Find the  length of the perpendicular and its equations 

Solution: Coordinates of the foot of the perpendicular 
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 Q(6) Find the points on the lines 
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nearest to each other. Hence find the shortest distance between the  lines and its equation.. 
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 Solution: coordinates of the nearest points are )3,8,3( , ),6,7,3(  shortest 

distance = ,270  Equation of the shortest distance is k
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Q(7). Find the shortest distance between the lines  
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Solution  shortest distance between two lines = ,  292  

Q(8). Prove that the shortest distance between the diagonal of the rectangular 

parallelepiped and the edges not meeting it  are  
22 cb

bc


,

22 ca

ca


,

22 ab

ab


 where 

a,b, and c are length of the edges. 

 

Q(9). Find a vector normal (perpendicular) to the plane of P(1,-1, 0), Q(2, 1,-1) and  R(-1, 1, 

2). 

Solution A vector normal to the plane is .6i6   

Q(10).Find the vector equation of the line through the point with position 

vector k3ji2    which is parallel to the vector i + j + k. Determine the points 

corresponding to 2,0,3  in the resulting equation 

Solution:  A vector equation of the line is )kji(k3ji2r   and the 

corresponding points are  k3ji2r,0   
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)j2i5r,3
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
 

 

 

Q(1).  

Solution:  
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Angle between the lines is (i)  

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Q(2). Find the shortest distance between the lines  
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k5i5i4cand,k5i10i3b,k2i6i4a   

0

554

5103

264

c)ba( 



  Therefore, 0c)ba(   implies that these four points 

are coplanar.  

Q(3) . Equation of the plane is .38z3y8x9   

Q(4). Equations of the plane are (i) .19z6y5x    (ii) ,20z7y6x5   

(iii) .9zyx   

Q(5). Equation of the plane is .57z16y19x71   

Q(6). (i) Equation of st : line t
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j2i4n  . Therefore 0kn  , hence  line is normal to z axis. 

(ii) Distance between two points is 13. 

Q(7). Equation of st : line t
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Q(9). Equations of bisectors through  lines are  
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Q(10). Symmetrical  equation of line of projection is 
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Q(11)  (i) Equation of plane   is   .11z4yx3   (ii) Angle between lines is 
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Q(14). Equation of st : line t
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