Semester	Code	Module Title	Credits	C/E/O	GPA/NGPA
7,8	MA4130	Optimization	3	Е	GPA
Hours/Week		Pre-requisites/Co-requisites		Evaluation (%)	
Lecture	Tute/Lab			CA	WE
3	0	MA2024		30	70

Learning Outcomes

After the successful completion of this course students should be able to

- Formulate problems in science and engineering as optimisation problems
- Describe and explain different type of optimization methods
- Explain and apply basic concepts in optimization, such as convexity, basic solutions, extreme values, duality, convergence rate, Lagrangian, KKT conditions

Syllabus Outline

- Fundamentals of nonlinear optimization theory and methods.
- Topics include unconstrained and constrained optimization
- Lagrangian relaxation, generalized programming, and semi-definite programming.
- SQP methods, and primal-dual interior methods for nonlinearly constrained optimization. Semidefinite programming and interior methods
- Optimization of unimodal functions by Fibonacci sequential search, Golden section search
- Apply multi-variable methods to optimisation problems using gradient methods: steepest descent, conjugate gradient
- Kuhn-Tucker conditions to functions with inequality constraints,