TOPOLOGY

Definition:

$\mathbb{N}_{n}=\{1,2, \cdots, n\}$
\mathbb{N} : set of natural numbers
\mathbb{Z} : set of integers
\mathbb{Q} : set of rational numbers
\mathbb{R} : set of real numbers
\mathbb{Q}^{c} : set of irrational numbers
\mathbb{C} : set of complex numbers

Theorem:

There is a rational number and an irrational number between any two real numbers

Definition: open ball $B_{r}(a)$ of radius r and center a

$$
B_{r}(a)=\{x| | x-a \mid<r\}
$$

Definition: boundary points ∂A of A
$p \in \partial A \Leftrightarrow \forall r \exists q, s \in B_{r}(p)$ s.t. $q \in A$ and $s \in A^{c}$
Definition: interior points $A^{\circ}=\operatorname{int} A$ of A
$p \in A^{\circ} \Leftrightarrow \exists r$ s.t. $B_{r}(p) \subset A$
Definition: closure points \bar{A} of A
$p \in \bar{A} \Leftrightarrow \forall r \exists q \in B_{r}(p)$ s.t. $q \in A$
Definition: limit points A^{\prime} of A
$p \in A^{\prime} \Leftrightarrow \forall r \exists q \in B_{r}(p)$ s.t. $q \in A$ and $q \neq p$

Theorem:

1. $\partial \mathbb{Q}=\mathbb{R}$
2. $\mathbb{Q}^{\circ}=\varnothing$
3. $\overline{\mathbb{Q}}=\mathbb{R}$
4. $\mathbb{Q}^{\prime}=\mathbb{R}$

Theorem:

1. $A^{\circ} \subseteq A \subseteq A^{\prime} \subseteq \bar{A}$
2. $\partial A \subseteq \bar{A}$
3. $\bar{A}=A^{\circ} \cup \partial A$
4. $\bar{A}=A \cup A^{\prime}$

Definition: dense subset B of A
$\bar{B}=A$

Theorem:

Irrational numbers are dense in real numbers

Definition: open set A
$A^{\circ}=A$
Definition: closed set A
$\bar{A}=A$

Theorem:

1) union of open sets is open
2) intersection of closed sets is closed

Example:

1. $\cap_{k=1}^{\infty}\left(2-\frac{1}{k}, 3+\frac{1}{k}\right)=[2,3]$
2. $\mathrm{U}_{k=1}^{\infty}\left[2+\frac{1}{k}, 3-\frac{1}{k}\right]=(2,3)$

SET THEORY

Definition: set A and B and equivalent $A \sim B$
\exists a bijective function $f: A \rightarrow B$

Theorem:

\sim is an equivalence relation

Definition: finite set A

$A \sim \mathbb{N}_{n}$

Definition: countably infinite set A

$A \sim \mathbb{N}$
Definition: countable set A
A is finite or countably infinite
Theorem: The following are equivalent

1) A is countable
2) \exists a one to one function $f: A \rightarrow \mathbb{N}$
3) \exists a onto function $f: \mathbb{N} \rightarrow A$

Definition: uncountable set A

A is not countable

Theorem:

1) a subset of a countable set is countable
2) a superset of an uncountable set is uncountable

Theorem:

1. \mathbb{Z} is countable
2. \mathbb{Q} is countable (Cantor)
3. \mathbb{R} is uncountable (Cantor)

Definition: Cardinality $\operatorname{card} A=|A|=n(A)=\# A$ of the set A

1. $\operatorname{card} \mathbb{N}_{n}=n$
2. $\quad \operatorname{card} \mathbb{N}=\mathcal{N}_{0}$
3. $\operatorname{card} A=\operatorname{card} B$ iff $A \sim B$
4. $\operatorname{card} A>\operatorname{card} B$ iff \exists a onto function $f: A \rightarrow B$

Theorem:

1. $\operatorname{card} \mathcal{P}(A)=2^{\operatorname{card} A}$
2. $\quad \operatorname{card} \mathbb{R}=2^{\mathcal{N}_{0}}=\mathcal{N}_{1}=\mathfrak{c}$

Hypothesis: continuum hypothesis
There is no set S with $\mathcal{N}_{0}<\operatorname{cardS}<\mathcal{N}_{1}$
Definition: upper bound U of set A
$\forall x \in A, x \leq U$
Definition: A is bounded above
\exists an upper bound U of A
Definition: lower bound L of set A
$\forall x \in A, L \leq x$
Definition: A is bounded below
\exists a lower bound L of A
Definition: bounded set A
A bound above and below.
Definition: supremum of A
$\sup A=\max \{U \mid U$ is an upper bound of $A\}$
Definition: infemum of A
$\inf A=\inf \{L \mid L$ is a lower bound of $A\}$

Definition:

1. $A+x=\{a+x \mid a \in A\}$
2. $A+B=\{a+b \mid a \in A$ and $b \in B\}$

Theorem:

1. $\sup (A+B)=\sup A+\sup (B)$
2. $\quad \inf (A+B)=\inf (A)+\inf (B)$

Axiom: completeness axiom

1. every non empty subset of real numbers which is bounded above has a sepremum.
2. every non empty subset of real numbers which is bounded below has a infemum.

Definition: open cover $\left\{I_{k}\right\}_{k}$ of open sets I_{k} of A
$A \subseteq \bigcup_{k} I_{k}$
Definition: length of an interval $I=(a, b)$
$l(I)=b-a$
Definition: (Lebesgue) measure of A
$m(A)=\inf \left\{\sum_{k} l\left(I_{k}\right) \mid\left\{I_{k}\right\}_{k}\right.$ is an open cover of $\left.A\right\}$

Theorem:

1. $m(A \cup B) \leq m(A)+m(B)$
2. $m(A+x)=m(A)$

Definition: measurable set $A \subseteq X$
$\forall B \subseteq X, m(B)=m(B \cup A)+m\left(B \cap A^{c}\right)$

Theorem:

1. an interval $I=(a, b)$ is measurable and $m(I)=l(I)$
2. \varnothing is measurable and $m(\varnothing)=0$
3. A is measurable $\Rightarrow m(A \cup B)=m(A)+m(B)$
4. $m(\mathbb{Q})=0$

Definition: Cantor set

Let $C_{0}=[0,1]$.
$C_{1}=C_{0}-\left(\frac{1}{3}, \frac{2}{3}\right)=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$ set obtained by removing the middle $\frac{1}{3}$ of C_{0}
$C_{2}=C_{1}-\left(\frac{1}{9}, \frac{2}{9}\right) \cup\left(\frac{7}{9}, \frac{8}{9}\right)=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right]$ set obtained by removing the middle $\frac{1}{3}$ of closed sets of C_{1}
and so on
Cantor set $\mathcal{C}=\bigcap_{n=1}^{\infty} C_{n}$
Theorem: Cantor set \mathcal{C}

1. only contains numbers with digits 0 or 2 in base 3 .
2. $\frac{1}{4} \in \mathcal{C}$
3. is Uncountable
4. has measure zero

Definition: diameter of a set

$\operatorname{diam}(A)=\sup \{|x-y|: x, y \in A\}$
Definition: $H_{\alpha}(A)=\inf \left\{\sum_{n=1}^{\infty}(\operatorname{diam} A)^{\alpha}: A \subseteq \bigcup_{n=1}^{\infty} A_{n}\right\}$

Definition: Hausdorff dimension

$\operatorname{dim}_{H}(A)=\inf \left\{\alpha>0: H_{\alpha}(A)=0\right\}=\sup \left\{\alpha \geq 0: H_{\alpha}(A)>0\right\}$

Theorem:

1. $\operatorname{dim}_{H}([0,1])=1$
2. A is countable $\Rightarrow \operatorname{dim}_{H}(A)=0$
3. $\operatorname{dim}_{H}(\mathcal{C})=\frac{\log 2}{\log 3}=\log _{3} 2 \approx 0.6309 \ldots$

Definition: Sierpinski triangle \mathcal{S}

Definition: Mandelbrot set \mathcal{M}

$\mathcal{M}=\left\{c \mid f^{n}(0) \rightarrow 0\right.$ as $\left.n \rightarrow \infty\right\}$
where $f(z)=z^{2}+c$ and $f^{n}(z)=f\left(f^{n-1}(z)\right)$ with $f^{0}(z)=f(z)$

Theorem:

1. $\operatorname{dim}_{H}(\mathcal{S})=\frac{\log 3}{\log 2}=\log _{2} 3 \approx 1.584 \ldots$
2. $\operatorname{dim}_{H}(\partial \mathcal{M})=2$

GRAPH THEORY

Definitions:

graph $G=(V, E)$
V is the set of vertices
E is the set of edges

Definitions: If $u, v \in V$ are joined by $e \in E$ in a graph $G=(V, E)$ then
we say edges u, v are adjacent
if there is no direction of the edge e we write $e=\{u, v\}$ and say G an undirected graph
if there is a direction of e from u to v we write $e=(u, v)$ and say G an directed graph
say G a weighted graph iff \exists a function $W: E \rightarrow \mathbb{R}$ and the weight of G is $\sum_{e \in E} W(e)$

Definition: incidence(adjacency) matrix $M(G)$ of an undirected, unweighted graph G $M(G)=\left(m_{i j}\right)$ where $m_{i j}=$ no of edges joining v_{i} to v_{j}

Definition: degree of a vertex

$\operatorname{deg}(v)=$ no of edges connected to v

Theorem:

1) number of odd degree vertices are even
2) number of even degree vertices are odd

Definition:

1) path is a sequence of vertices and edges connected to them.
2) cycle is a closed path.
3) graph is connected iff there is a path between any two vertices.
4) graph is simple iff it contains no loops or multiple edges. .

Definition: complete graph K_{n}

is a simple undirected graph with every pair of vertex is adjacent

Definition: bipartite graph $K_{m, n}$
is a simple undirected graph such that the set of vertices can be decomposed into two disjoint sets of size m, n and every vertex in one set is adjacent to every vertex on the other set.

Example:

Definition:

a graph is planar if it can be drown on the plane such that no edges crossing.

Theorem: Kuratowski

a graph is planar iff it does not contain K_{5} and $K_{3,3}$ as subgraphs

Definition: chromatic number of G

$\chi(G)=$ the smallest number of colors needed to color the vertices of G so that no two adjascent vertices share the same color.

Theorem: five color theorem

$\chi(G) \leq 5$

Conjecture: four color conjecture

$\chi(G) \leq 4$

Definition:

1) Hamiltonian cycle is cycle containing each vertex exactly once.
2) a graph is Hamiltonian iff it contains a Hamiltonian cycle.

Example: the dodecahedron graph is Hamiltonian

Theorem: $G=(V, E)$

1) $\operatorname{card} V \geq 3$
2) every vertex has degree $\geq \operatorname{card} V / 2$
then G is Hamiltonian.

Definition: Travelling Salesman Problem on a weighted graph G is to find the Hamiltonian cycle with the least weight.

Definition:

1) Eular cycle is cycle containing each edge exactly once.
2) a graph is Eularian iff it contains an Euler cycle.

Theorem: $G=(V, E)$

1) G is connected
2) each vertex has even degree

Iff G is Eularian

Definition: Travelling Postman Problem on a weighted graph G is to find a cycle with least weight containing every edge.

Definition: Tree

is a connected graph with no cycles.

Definition:

1) spanning tree is a tree containing all vertices.
2) minimal spanning tree is a spanning tree with minimal weight.

Algorithm: Dijkstra: to find the shortest path
DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE (G, s)
$S \leftarrow \emptyset$
$Q \leftarrow V[G]$
while $Q \neq \emptyset$
2. do $u \leftarrow$ Extract $-\operatorname{Min}(Q)$
3. $\quad S \leftarrow S \cup\{u\}$
4. \quad for each $v \in \operatorname{Adj}[u]$
5. do $\operatorname{RELAX}(u, v, w)$

Algirithm:Prim: to find the minimal spanning tree
MST-PRIM (G,w,r)
9. for each $u \in V(G)$
10. do $\operatorname{key}[u] \leftarrow \infty$
11. $\pi[u] \leftarrow N I L$
12. $k e y[r] \leftarrow 0$
13. $Q \leftarrow V(G)$
14. while $Q \neq \emptyset$
15. \quad do $u \leftarrow \operatorname{Extract}-\operatorname{Min}(Q)$
16. \quad for each $v \in \operatorname{Adj}[u]$
17. \quad do if $v \in Q$ and $w(u, v)<k e y[v]$
18. then $\pi[v] \leftarrow u$
19.
$k e y[v] \leftarrow w(u, v)$

Algorithm: Breath-First Search: To find the vertices of G reachable from s $\operatorname{BFS}(G, s)$

1. for each vertex $u \in V(G)-\{s\}$
2. do color $[u] \leftarrow$ WHITE
3. $d[u] \leftarrow \infty$
4. $\quad \pi[u] \leftarrow N I L$
5. color $[s] \leftarrow G R A Y$
6. $d[s] \leftarrow 0$
7. $\pi[s] \leftarrow N I L$
8. $Q \leftarrow \emptyset$
9. $\operatorname{ENQUEUE}(Q, s)$
10. while $Q \neq \varnothing$
11. \quad do $u \leftarrow \operatorname{DEQUEUE}(Q)$
12. \quad for each $v \in \operatorname{Adj}[u]$
13. do if color $[v]=$ WHITE
14. then color $[v] \leftarrow G R A Y$
15.
16.

$d[v] \leftarrow d[u]+1$
$\pi[v] \leftarrow u$
$\operatorname{ENQUEUE}(Q, v)$
color $[u] \leftarrow$ BLACK

References: Introduction to Algotithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

