TOPOLOGY

Definition:

 $\mathbb{N}_n = \{1, 2, \cdots, n\}$ $\mathbb{N}: \text{ set of natural numbers}$ $\mathbb{Z}: \text{ set of integers}$ $\mathbb{Q}: \text{ set of rational numbers}$ $\mathbb{R}: \text{ set of real numbers}$ $\mathbb{Q}^c: \text{ set of irrational numbers}$ $\mathbb{C}: \text{ set of complex numbers}$

Theorem:

There is a rational number and an irrational number between any two real numbers

Definition: open ball $B_r(a)$ of **radius** r and **center** a $B_r(a) = \{x | |x - a| < r\}$

Definition: boundary points ∂A of A $p \in \partial A \iff \forall r \exists q, s \in B_r(p)$ s.t. $q \in A$ and $s \in A^c$

Definition: interior points $A^{\circ} = \text{int}A$ of A $p \in A^{\circ} \iff \exists r \text{ s. t. } B_r(p) \subset A$

Definition: closure points \overline{A} of A $p \in \overline{A} \iff \forall r \exists q \in B_r(p) \text{s.t.} q \in A$

Definition: limit points A' of A $p \in A' \iff \forall r \exists q \in B_r(p)$ s.t. $q \in A$ and $q \neq p$

Theorem:

1. $\partial \mathbb{Q} = \mathbb{R}$ 2. $\mathbb{Q}^{\circ} = \emptyset$ 3. $\overline{\mathbb{Q}} = \mathbb{R}$ 4. $\mathbb{Q}' = \mathbb{R}$

Theorem:

- 1. $A^{\circ} \subseteq A \subseteq A' \subseteq \overline{A}$
- 2. $\partial A \subseteq \overline{A}$
- 3. $\overline{A} = A^\circ \cup \partial A$
- 4. $\overline{A} = A \cup A'$

Definition: dense subset *B* of *A*

 $\overline{B} = A$

Theorem:

Irrational numbers are dense in real numbers

Definition: open set A

 $A^\circ = A$

Definition: closed set *A*

 $\overline{A} = A$

CM4110-Advanced Topics in Mathematics-S7-2014-www.math.mrt.ac.lk/UCJ-20140527

Theorem:

- 1) union of open sets is open
- 2) intersection of closed sets is closed

Example:

1.
$$\bigcap_{k=1}^{\infty} \left(2 - \frac{1}{k}, 3 + \frac{1}{k} \right) = [2,3]$$

2. $\bigcup_{k=1}^{\infty} \left[2 + \frac{1}{k}, 3 - \frac{1}{k} \right] = (2,3)$

SET THEORY

Definition: set *A* and *B* and equivalent $A \sim B$ \exists a bijective function $f: A \rightarrow B$

Theorem:

 \sim is an equivalence relation

Definition: finite set A

 $A \sim \mathbb{N}_n$

Definition: countably infinite set \boldsymbol{A}

 $A\sim \mathbb{N}$

Definition: countable set A

 \boldsymbol{A} is finite or countably infinite

Theorem: The following are equivalent

- 1) A is countable
- 2) \exists a one to one function $f: A \to \mathbb{N}$
- 3) \exists a onto function $f: \mathbb{N} \to A$

Definition: uncountable set \boldsymbol{A}

A is not countable

Theorem:

- 1) a subset of a countable set is countable
- 2) a superset of an uncountable set is uncountable

Theorem:

- 1. \mathbb{Z} is countable
- 2. \mathbb{Q} is countable (Cantor)
- 3. \mathbb{R} is uncountable (Cantor)

Definition: Cardinality $\operatorname{card} A = |A| = n(A) = #A$ of the set *A*

- 1. $\operatorname{card}\mathbb{N}_n = n$
- 2. card $\mathbb{N} = \mathcal{N}_0$
- 3. cardA = cardB iff $A \sim B$
- 4. card*A* > card*B* iff \exists a onto function $f: A \rightarrow B$

Theorem:

- 1. $\operatorname{card}\mathcal{P}(A) = 2^{\operatorname{card} A}$
- 2. card $\mathbb{R} = 2^{\mathcal{N}_0} = \mathcal{N}_1 = \mathfrak{c}$

CM4110-Advanced Topics in Mathematics-S7-2014-www.math.mrt.ac.lk/UCJ-20140527

Hypothesis: continuum hypothesis There is no set *S* with $\mathcal{N}_0 < cardS < \mathcal{N}_1$

Definition: upper bound U of set A $\forall x \in A, x \leq U$

Definition: A is **bounded above** \exists an upper bound U of A

Definition: lower bound *L* of set *A* $\forall x \in A, L \leq x$

Definition: A is **bounded below** \exists a lower bound L of A

Definition: bounded set *A A* bound above and below.

Definition: supremum of *A* $\sup A = \max\{U|U \text{ is an upper bound } of A\}$

Definition: infemum of *A* inf $A = inf\{L|L \text{ is a lower bound of }A\}$

Definition:

1. $A + x = \{a + x | a \in A\}$ 2. $A + B = \{a + b | a \in A \text{ and } b \in B\}$

Theorem:

1. $\sup(A + B) = \sup A + \sup (B)$

2. $\inf(A + B) = \inf(A) + \inf(B)$

Axiom: completeness axiom

- 1. every non empty subset of real numbers which is bounded above has a sepremum.
- 2. every non empty subset of real numbers which is bounded below has a infemum.

Definition: open cover $\{I_k\}_k$ of open sets I_k of $A \subseteq \bigcup_k I_k$

Definition: length of an interval I = (a, b)l(I) = b - a

Definition: (Lebesgue) measure of *A* $m(A) = \inf\{\sum_{k} l(I_k) | \{I_k\}_k \text{ is an open cover of } A\}$

Theorem:

1. $m(A \cup B) \le m(A) + m(B)$ 2. m(A + x) = m(A)

Definition: measurable set $A \subseteq X$ $\forall B \subseteq X, m(B) = m(B \cup A) + m(B \cap A^c)$ CM4110-Advanced Topics in Mathematics-S7-2014-www.math.mrt.ac.lk/UCJ-20140527

Theorem:

- 1. an interval I = (a, b) is measurable and m(I) = l(I)
- 2. \emptyset is measurable and $m(\emptyset) = 0$
- 3. *A* is measurable $\Rightarrow m(A \cup B) = m(A) + m(B)$
- 4. $m(\mathbb{Q}) = 0$

Definition: Cantor set

Let $C_0 = [0,1]$. $C_1 = C_0 - \left(\frac{1}{3}, \frac{2}{3}\right) = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$ set obtained by removing the middle $\frac{1}{3}$ of C_0 $C_2 = C_1 - \left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right) = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$ set obtained by removing the middle $\frac{1}{3}$ of closed sets of C_1 and so on Cantor set $\mathcal{C} = \bigcap_{n=1}^{\infty} C_n$

Theorem: Cantor set $\mathcal C$

- 1. only contains numbers with digits 0 or 2 in base 3.
- 2. $\frac{1}{4} \in \mathcal{C}$
- 3. is Uncountable
- 4. has measure zero

Definition: diameter of a set

 $diam(A) = \sup \{ |x - y| : x, y \in A \}$

Definition: $H_{\alpha}(A) = \inf\{\sum_{n=1}^{\infty} (\operatorname{diam} A)^{\alpha} : A \subseteq \bigcup_{n=1}^{\infty} A_n \}$

Definition: Hausdorff dimension

 $\dim_{H}(A) = \inf \{ \alpha > 0 : H_{\alpha}(A) = 0 \} = \sup \{ \alpha \ge 0 : H_{\alpha}(A) > 0 \}$

Theorem:

- 1. $\dim_H([0,1]) = 1$
- 2. A is countable $\Rightarrow \dim_H(A) = 0$
- 3. $\dim_H(\mathcal{C}) = \frac{\log 2}{\log 3} = \log_3 2 \approx 0.6309 \dots$

Definition: Sierpinski triangle ${\mathcal S}$

Definition: Mandelbrot set \mathcal{M} $\mathcal{M} = \{c | f^n(0) \not\rightarrow 0 \text{ as } n \rightarrow \infty\}$ where $f(z) = z^2 + c$ and $f^n(z) = f(f^{n-1}(z))$ with $f^0(z) = f(z)$

Theorem:

- 1. $\dim_H(S) = \frac{\log_3}{\log_2} = \log_2 3 \approx 1.584 \dots$
- 2. $\dim_H(\partial \mathcal{M}) = 2$

GRAPH THEORY

Definitions:

graph G = (V, E)V is the set of **vertices** E is the set of **edges**

Definitions: If $u, v \in V$ are joined by $e \in E$ in a graph G = (V, E) then

we say edges u, v are **adjacent**

if there is no direction of the edge e we write $e = \{u, v\}$ and say G an **undirected** graph if there is a direction of e from u to v we write e = (u, v) and say G an **directed** graph say G a **weighted graph** iff \exists a function $W: E \to \mathbb{R}$ and the weight of G is $\sum_{e \in E} W(e)$

Definition: incidence(adjacency) matrix M(G) of an undirected, unweighted graph G $M(G) = (m_{ij})$ where m_{ij} =no of edges joining v_i to v_j

Definition: degree of a vertex

deg(v) =no of edges connected to v

Theorem:

- 1) number of odd degree vertices are even
- 2) number of even degree vertices are odd

Definition:

- 1) path is a sequence of vertices and edges connected to them.
- 2) cycle is a closed path.
- 3) graph is **connected** iff there is a path between any two vertices.
- 4) graph is simple iff it contains no loops or multiple edges. .

Definition: complete graph K_n

is a simple undirected graph with every pair of vertex is adjacent

Definition: bipartite graph $K_{m,n}$

is a simple undirected graph such that the set of vertices can be decomposed into two disjoint sets of size m, n and every vertex in one set is adjacent to every vertex on the other set.

Example:

Definition:

a graph is planar if it can be drown on the plane such that no edges crossing.

Theorem: Kuratowski

a graph is planar iff it does not contain K_5 and $K_{3,3}$ as subgraphs

Definition: chromatic number of *G*

 $\chi(G)$ = the smallest number of colors needed to color the vertices of G so that no two adjascent vertices share the same color.

Theorem: five color theorem $\chi(G) \le 5$

Conjecture: four color conjecture

 $\chi(G) \leq 4$

Definition:

- 1) Hamiltonian cycle is cycle containing each vertex exactly once.
- 2) a graph is **Hamiltonian** iff it contains a Hamiltonian cycle.

Example: the dodecahedron graph is Hamiltonian

Theorem: G = (V, E)

1) card $V \ge 3$

- 2) every vertex has degree $\geq cardV/2$
- then G is Hamiltonian.

Definition: Travelling Salesman Problem on a weighted graph *G* is to find the Hamiltonian cycle with the least weight.

Definition:

- 1) Eular cycle is cycle containing each edge exactly once.
- 2) a graph is Eularian iff it contains an Euler cycle.

Theorem: G = (V, E)

- 1) G is connected
- 2) each vertex has even degree
- Iff G is Eularian

Definition: Travelling Postman Problem on a weighted graph *G* is to find a cycle with least weight containing every edge.

Definition: Tree

is a connected graph with no cycles.

Definition:

- 1) **spanning tree** is a tree containing all vertices.
- 2) minimal spanning tree is a spanning tree with minimal weight.

Algorithm: Dijkstra: to find the shortest path

```
DIJKSTRA(G, w, s)
1. INITIALIZE-SINGLE-SOURCE (G, s)

2. S \leftarrow \emptyset

3. Q \leftarrow V[G]

4. while Q \neq \emptyset

5. do u \leftarrow \text{Extract} - \text{Min}(Q)
```

- $6. \qquad S \leftarrow S \cup \{u\}$
- 7. **for** each $v \in Adj[u]$
- 8. **do** RELAX(u, v, w)

Algirithm:Prim: to find the minimal spanning tree

MST - PRIM(G, w, r)9. for each $u \in V(G)$ **do** $key[u] \leftarrow \infty$ 10. $\pi[u] \leftarrow NIL$ 11. 12. $key[r] \leftarrow 0$ 13. $Q \leftarrow V(G)$ 14. while $Q \neq \emptyset$ 15. **do** $u \leftarrow \text{Extract} - \text{Min}(Q)$ for each $v \in Adj[u]$ 16. **do if** $v \in Q$ and w(u, v) < key[v]17. then $\pi[v] \leftarrow u$ 18. $key[v] \leftarrow w(u, v)$ 19.

Algorithm: Breath-First Search: To find the vertices of *G* reachable from *s* BFS(G, s)

1. for each vertex $u \in V(G) - \{s\}$ 2. **do** $color[u] \leftarrow WHITE$ 3. $d[u] \leftarrow \infty$ $\pi[u] \leftarrow NIL$ 4. 5. $color[s] \leftarrow GRAY$ 6. $d[s] \leftarrow 0$ 7. $\pi[s] \leftarrow NIL$ 8. $Q \leftarrow \emptyset$ 9. ENQUEUE(Q, s)10. while $Q \neq \emptyset$ 11. **do** $u \leftarrow \text{DEQUEUE}(Q)$ 12. **for** each $v \in Adj[u]$ **do if** color[v] = WHITE13. then $color[v] \leftarrow GRAY$ 14. $d[v] \leftarrow d[u] + 1$ 15. $\pi[v] \leftarrow u$ 16. ENQUEUE(Q, v)17. 18. $color[u] \leftarrow BLACK$

References: Introduction to Algotithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.