Consider the ODE $y^{\prime \prime}=\frac{3}{2} y^{2}, y(0)=4, y(1)=1$.

1) Use the second order method $y_{k}^{\prime \prime}=\frac{y_{k+1}-2 y_{k}+y_{k-1}}{h^{2}}$ with $h=\frac{1}{3}$ to derive the system of non-linear equations $\frac{1}{6} y_{k}^{2}=y_{k+1}-2 y_{k}+y_{k-1} ; k=1,2$.
2) Use a suitable numerical method to solve the above system of non-linear equations to find y_{1}, y_{2}.
3) Write the Cubic spline $C=C(x)$ for the function $y=y(x)$ using $y_{0}=4, y_{3}=1$ and keeping y_{1}, y_{2} as constants. Use the ODE to determine $M_{k}=y^{\prime \prime}\left(x_{k}\right) ; k=0,1,2,3$.
4) Now use the properties of $C(x)$ to obtain a systems of non-linear equations and solve it to find y_{1}, y_{2}.
5) Derive a modified Euler method $y_{k+2}=2 y_{k+1}-y_{k}+h^{2} f\left(x_{k+1}, y_{k+1}\right)$ to solve $y^{\prime \prime}=f(x, y)$ using second order Taylor series and Trapezoidal rule for integration.
6) Use the above method to obtain a systems of non-linear equations and solve it to find y_{1}, y_{2}.
7) Derive the standard Euler method to solve a system of first order ODEs. Use it to find y_{1}, y_{2}.
8) Write the ODE as a system of first order ODEs and solve it by RK4 to find y_{1}, y_{2}.

Note:

1. Three of exact same questions with a different ODE will be given for the Mid1-part A.
2. The other five questions will be given as Mid2 take home.
3. Mid1-part B will be on PDEs, possibly containing material from the lecture on the same day, it will be MCQ.
