Question: Find the roots of $x=\frac{1}{2} \cos x$ on $\left[0, \frac{\pi}{4}\right]$.

Theorem:

1. $g: G \rightarrow \mathbb{C}$ and G is closed subset of \mathbb{C}
2. $g(G) \subseteq G$
3. g is Lipschitz continuous with a constant $0 \leq L<1$

Then

1. There is a unique fixed point $z \in G$ of g
2. The sequence determined by $x_{0} \in G, x_{k+1}=g\left(x_{k}\right)$ converges to z
3. $\left|x_{k}-z\right| \leq \frac{L^{k}}{1-L}\left|x_{1}-x_{0}\right|$

Theorem:

1. $g: G \rightarrow \mathbb{C}$ and G is closed subset of \mathbb{C}
2. g is continuously differentiable
3. $\left|g^{\prime}(x)\right| \leq L$ for all $x \in G$

Then
g is Lipschitz continuous with constant L
Note: Extend the ideas here to find the roots of $x=\frac{1}{3} \cos x y+\frac{1}{6}$ and $y=-\frac{1}{20} e^{-x y}-\frac{8}{20}$ on $[-1,1]^{2}$. Closed subset will be replaced by convex subset.

