Question: Find the roots of $x = \frac{1}{2}\cos x$ on $\left[0, \frac{\pi}{4}\right]$.

Theorem:

- 1. $g: G \to \mathbb{C}$ and G is closed subset of \mathbb{C}
- 2. $g(G) \subseteq G$
- 3. g is Lipschitz continuous with a constant $0 \le L < 1$ Then
- 1. There is a unique fixed point $z \in G$ of g
- 2. The sequence determined by $x_0 \in G$, $\breve{x}_{k+1} = g(x_k)$ converges to z

3.
$$|x_k - z| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

Theorem:

- 1. $g: G \to \mathbb{C}$ and G is closed subset of \mathbb{C}
- 2. *g* is continuously differentiable
- 3. $|g'(x)| \le L$ for all $x \in G$ Then

g is Lipschitz continuous with constant L

Note: Extend the ideas here to find the roots of $x = \frac{1}{3}\cos xy + \frac{1}{6}$ and $y = -\frac{1}{20}e^{-xy} - \frac{8}{20}$ on $[-1,1]^2$. Closed subset will be replaced by convex subset.