Question: Consider the following table

x_k	$f(x_k)$	$f'(x_k)$
1	2	0
2	3	1
4	6	2
5	7	0

- 1) Find a polynomial that passes through the points $(x_k, f(x_k))$.
- 2) Find a polynomial that passes through the points $(x_k, f(x_k))$ and agrees with $f'(x_k)$.
- 3) Find a piecewise polynomial that passes through the points $(x_k, f(x_k))$ such that $f'(x_k)$ exists and $f''(x_0) = f''(x_n) = 0$
- **4)** Find a degree 2 polynomial $p_2(x)$ such that the sum of square error $\sum_{k=0}^{n} (f(x_k) p_2(x_k))^2$ is minimized.

Theorem: Lagrange Interpolation

$$L(x) = \sum_{k=0}^{n} f(x_k) L_k(x)$$

Theorem: Hermite Interpolation

$$H(x) = \sum_{k=0}^{n} f(x_k) (1 - 2(x - x_k) L_k'(x)) L_k^2(x) + \sum_{k=0}^{n} f'(x_k) (x - x_k) L_k^2(x)$$

Theorem: Cubic Spline Interpolation

$$C(x) = \left(\frac{(x_{k+1} - x)((x_{k+1} - x)^2 - (x_{k+1} - x_k)^2)}{6(x_{k+1} - x_k)}\right) f''(x_k) + \left(\frac{(x - x_k)((x - x_k)^2 - (x_{k+1} - x_k)^2)}{6(x_{k+1} - x_k)}\right) f''(x_{k+1}) + \left(\frac{x_{k+1} - x}{x_{k+1} - x_k}\right) f(x_k) + \left(\frac{x - x_k}{x_{k+1} - x_k}\right) f(x_{k+1})$$