17. Multiply the integrals $I=\int_{0}^{\infty} e^{-x^{2}} d x$ and $I=\int_{0}^{\infty} e^{-y^{2}} d y$, write as a double integral, convert to polar coordinates and find I.
18. Consider the double integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-x y} \sin x d x d y$, use Fubini's theorem to find $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
19. Consider the complex integral $\int_{C} \frac{e^{i z}}{z} d z$ where C the boundary of the region between the circles of radius R and r with $R>r$ above the x exis. Let $R \rightarrow \infty$ and $r \rightarrow 0$ and use Cauchy's Residue theorem to find $\int_{0}^{\infty} \frac{\sin x}{x} d x$. Show that complex integrals become zero when necessary.
20. Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Also find the perimeter using Elliptic Integrals.
21. Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. Also find surface area using Elliptic Integrals, use a modified form of spherical polar coordinates.
22. Use Divergence theorem to prove the Archimedes's Principle.
23. Let $u=u(x, y), s=s(x, y), t=t(x, y)$ and $\operatorname{det} \frac{\partial(s, t)}{\partial(x, y)} \neq 0$.

We rewrite $A u_{x x}+B u_{x y}+C u_{y y}$ as $\bar{A} u_{s s}+\bar{B} u_{s t}+\bar{C} u_{t t}+\cdots$ after changing variables. Show that $\bar{B}^{2}-4 \bar{A} \bar{C}=\left(\operatorname{det} \frac{\partial(s, t)}{\partial(x, y)}\right)^{2}\left(B^{2}-4 A C\right)$.
24. Let \boldsymbol{f} be a vector field continuous on an open connected set A in \mathbb{R}^{3}. Show that \boldsymbol{f} is the gradient of some potential function in A iff the line integral of \boldsymbol{f} is independent on any piecewise smooth path in A.
25. First question in MID
26. Second question in MID

