MA2073-14S3-MID-20160428-Page 1 of 4	Field: CS
Name:	Index Number:

Q1. Magnetic field **B** induced at the origin by a curve C (given by the position vector) carrying a steady current I in the direction of the curve C is given by the Biot-Savart Law:

$$\boldsymbol{B} = \frac{\mu_0 I}{4\pi} \int\limits_C \frac{\boldsymbol{r} \times \boldsymbol{dr}}{\|\boldsymbol{r}\|^3}$$

Here μ_0 is the permeability of the vacuum. Let the curve *C* be the circle with radius *a* and center on the *z* axis at a distance *b* from the origin and contained in a plane parallel to the *xy* plane. The direction of the curve is clockwise when observed from the origin. Find the magnetic field induced at the origin.

MA2073-14S3-MID-20160428-Page 2 of 4	Field: CS
Name:	Index Number:

Q2. In Quantum Mechanics the wave function for the 1s orbital of the Hydrogen atom is given by

$$\psi(r,\phi,\theta) = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$$

where a is the Bohr Radius. Note that ψ^2 is a Probability Density Function (PDF)

 $\rho = \rho(u, v, w)$ and the probability of u > c is given by $P(u > c) = \iiint_V \rho dV$ where V is the region corresponding to u > c. Find the probability of finding the electron outside twice the Bohr Radius, i.e. P(r > 2a).

MA2073-14S3-MID-20160428-Page 3 of 4	Field: CS
Name:	Index Number:

Q3. The electrostatic field **E** by a charge Q placed at the origin is given by $\mathbf{E} = \frac{Q}{4\pi\varepsilon_0 \|\mathbf{r}\|^3} \mathbf{r}$. Here ε_0 is the permittivity of the vacuum. Find the flux $\oint \mathbf{E} \cdot d\mathbf{S}$ though a sphere of radius a.

MA2073-14S3-MID-20160428-Page 4 of 4	Field: CS
Name:	Index Number:

Q4. The Einstein Field Equation in General Relativity is $R_{ij} - \frac{1}{2}Rg_{ij} + \Lambda g_{ij} = \frac{8\pi G}{c^4}T_{ij}$. Here g_{ij} are the components of the Matric Tensor(which is a symmetric Matrix) defined as

$$ds^{2} = ||d\mathbf{r}||^{2} = (du \quad dv \quad dw)g\begin{pmatrix}du\\dv\\dw\end{pmatrix}$$

where $\mathbf{r} = \mathbf{r}(u, v, w)$ is the position vector. Find g for the spherical polar coordinate system (r, ϕ, θ) .