MA2073-Mid-13S3-20150730-Page 1 of 4	Field:
Name:	Index Number:

Q1. Consider fitting of data $(x_n, y_n): n = 1, 2, \dots, m$ by a least Square Line ax + b. We do this by minimizing the sum of square error $f(a, b) = \sum_{n=1}^{m} (y_n - ax_n - b)^2$ as a function of (a, b). Find the critical points of f and confirm that it is corresponding to a global minimum.

Find the least square line for the following data.

x_n	1	2	3	4
y_n	1	3	2	4

MA2073-Mid-13S3-20150730-Page 2 of 4	Field:
Name:	Index Number:

MA2073-Mid-13S3-20150730-Page 3 of 4	Field:
Name:	Index Number:

Q2: Consider the numerical minimization of the function f(a, b) using the Steepest Descend Method. Here we start at a point (a_0, b_0) and follow the direction of the minimum slope of f at (a_0, b_0) until we get the minimum of f at (a_1, b_1) along this selected direction. Then we repeat the process at (a_1, b_1) and so on. Show that such consecutive minimum slope directions are perpendicular.

The function for Q1 is $f(a, b) = 30 - 58a + 30a^2 - 20b + 20ab + 4b^2$. Write the first two steps of the Steepest Descend Method starting from (0,0).

MA2073-Mid-13S3-20150730-Page 4 of 4	Field:
Name:	Index Number: