MA2073-Mid-13S3-20150730-Page 1 of 4	Field:
Name:	Index Number:

Q1. Consider fitting of data $\left(x_{n}, y_{n}\right): n=1,2, \cdots, m$ by a least Square Line $a x+b$. We do this by minimizing the sum of square error $f(a, b)=\sum_{n=1}^{m}\left(y_{n}-a x_{n}-b\right)^{2}$ as a function of (a, b).
Find the critical points of f and confirm that it is corresponding to a global minimum.

Find the least square line for the following data.

x_{n}	1	2	3	4
y_{n}	1	3	2	4

MA2073-Mid-13S3-20150730-Page 3 of 4	Field:
Name:	Index Number:

Q2: Consider the numerical minimization of the function $f(a, b)$ using the Steepest Descend Method. Here we start at a point $\left(a_{0}, b_{0}\right)$ and follow the direction of the minimum slope of f at $\left(a_{0}, b_{0}\right)$ until we get the minimum of f at $\left(a_{1}, b_{1}\right)$ along this selected direction. Then we repeat the process at $\left(a_{1}, b_{1}\right)$ and so on. Show that such consecutive minimum slope directions are perpendicular.

The function for Q1 is $f(a, b)=30-58 a+30 a^{2}-20 b+20 a b+4 b^{2}$. Write the first two steps of the Steepest Descend Method starting from $(0,0)$.

MA2073-Mid-13S3-20150730-Page 4 of 4	Field:
Name:	Index Number:

