University of Moratuwa, Faculty of Engineering, Department of Mathematics-20141201 BSc Engineering Honors Degree Semester 4(12 batch): 2014/12/01-2015/04/03-16 weeks, Reading Week-2014/12/19-2015/01/05 CS(100)-Mo 16.15: 18.15-CS tutorial room

Lecturer: Dr. Udaya Chinthaka Jayatilake

Email: <u>ucjaya@uom.lk</u>, Mobile: 0770064997, Room: MA218, Ext. 6305 Web: <u>http://www.math.mrt.ac.lk/content/drudayajayatilake-teaching</u>

Module	MA2063	Title	Differential Equations and Applications			
Crodite	02	Hours/	Lectures	02	Bro requisitos	MA1012
creats	02	Week	Lab/Tutorials	-	Pre-requisites	IVIA1015
Learning	Outcomes					
At the er	nd of this modul	e the studen	t should be able to			
•	Solve ordinary of	lifferential e	quations in engineeri	ng applicatio	ons.	
•	Apply approxim	ate Fourier s	series for periodic fun	ctions in rea	I world applications	
•	Solve various ca	itegories of p	partial differential equ	ations that	appear in engineerir	ig system
	modeling.	C C	1.5.			
•	Apply Laplace to	ansform an	d Fourier transform r	nethods to s	olve differential equ	ations in
Outline S	Syllabus	lications				
Different	tial Equations	wations: Va	riable conarable, hom	ogonoous li	near and exact equi	tions
Second c	order differentia	lequations	hable separable, nom	ogeneous, n		itions.
Second c		requations.				
Fourier S	Series approxim	ation				
Fourier c	oefficients, Dirio	chlet's condi	tion.			
Odd and	l even function,	half range se	eries.			
Irigonon	netric approxim	ation to disc	rete data.			
Partial D	ifferential Equa	tions				
Classifica	ation of second-o	order partial	differential equation	s.		
Solutions	s by separation o	of variables.				
Fourier s	eries application	n to boundar	ry value problems.			
Laplace 1	Transform and a	applications				
Laplace t	ransforms of ele	ementary fur	nctions and some bas	ic theorems	on Laplace transfor	ns.
Applicati	on of Laplace	transforms	to solution of diffe	erential equ	ations and system	of differentia
equation	IS.					
Transfer	functions, Conv	olution theo	rem, concepts of stat	oility and cor	trollability.	
Fourier 1	Transform and a	pplications				
Non-peri	iodic function, F	ourier transf	orms, properties of F	ourier transf	orm and application	15.
Method	of Assessment					
End of se	emester examina	ation: 2 hour	r closes book paper: 7	0%		
Mid sem	ester examination	on: 1 hour o	pen book paper: 10%			
In-class a	assessments: 10	%				
Take-hor	me assessment:	10%				
<u>Requirer</u>	nents					
80% atte	ndance is comp	ulsory				
<u>Referenc</u>	<u>ces</u>					
•	Calculus, Volum	e II, Tom M.	Apostol.			
•	Differential Equ	ations-Linea	-Nonlinear-Ordinary-	Partial, A.C.	King, J. Billingham, S	.R. Otto
•	Advanced Engin	eering Math	iematics, Dennis G. Zi	ll, Warren S.	Wright	
•	Advanced Engin	eering Math	ematics, Michael D. (Greenberg		
•	Partial Different	ial Equation	s-An Introduction, Wa	alter A. Strau	ISS	
•	Introduction to	Partial Diffe	rential Equations, K. S	ankara Rao		
•	http://www.wo	Iframalpha.c	com/			

• http://mathworld.wolfram.com/