Q1. If x is a solution to the following differential equation, find the other linearly independent solution using the Wronskian Method.
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$.
Q2. Use the Frobenius Method to solve the following Legendre Differential Equation. m is an integer.

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+m(m+1) y=0
$$

Q3. Solve the following Heat Equation using Fourier Series.
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<\pi, t>0$
$u(0, t)=0, u(\pi, t)=0, t \geq 0$
$u(x, 0)=\left\{\begin{array}{cc}x & , 0 \leq x \leq \frac{\pi}{2} \\ \pi-x & , \frac{\pi}{2}<x \leq \pi\end{array}\right.$
Q4. Solve the following Wave Equation using Fourier Series.
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<\pi, t>0$
$u(0, t)=0, u(\pi, t)=0, t \geq 0$
$u(x, 0)=\sin x, 0 \leq x \leq \pi$
$u_{t}(x, 0)=x^{2}, 0 \leq x \leq \pi$
Q5. Use Laplace Transform to solve the following Differential Equation. Use Partial Fraction/Convolution/Complex Inversion Formula to find the inverse Laplace Transform.
$y^{\prime \prime}(x)-2 y^{\prime}(x)+y(x)=\sin x, y(0)=0, y^{\prime}(0)=1$.
Q6. Solve the following Heat Equation using Laplace Transform.
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<1, t>0$
$u(0, t)=1, u(1, t)=1, t \geq 0$
$u(x, 0)=1+\sin \pi x, 0 \leq x \leq 1$
Q7. Solve the following Laplace Equation using Fourier Transform.
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial t^{2}}=0,-\infty<x<\infty, t>0$
$u(x, 0)=f(x),-\infty<x<\infty$
u is bounded as $t \rightarrow \infty, u$ and u_{x} both $\rightarrow 0$ as $|x| \rightarrow \infty$

Q8. Solve following the Airy's Differential Equation using Fourier Transform.
$\frac{d^{2} y}{\partial x^{2}}-x y=0$

Solve the following time-independent Schrödinger's Wave Equation for the Hydrogen atom using the
Separation of Variable Method.
$-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi$
You will have to solve the following differential equations(don't worry about reducing the above to the following) m, n are integers.

Q9. Associated Legendre Differential Equation: $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\left[m(m+1)-\frac{n^{2}}{1-x^{2}}\right] y=0$
Q10. Associated Leguerre Differential Equation: $x \frac{d^{2} y}{d x^{2}}+(n+1-x) \frac{d y}{d x}+m y=0$

