1. Let $u \in V$ be an inner product space and W be a subspace spanned by the orthonormal set $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$. Let the projection of $u \in V$ onto W be defined by $P u=\sum_{i=1}^{n}\left\langle u, w_{i}\right\rangle w_{i}$. Show that $P u$ is the best approximation in W to u with respect to the norm defined by the inner product.

Solution

Let $F=\mathbb{C}$. We will show that $\|u-w\| \geq\|u-P u\|$ for any $w \in W$.
$\|u-w\|^{2}$
$=\|u-P u+P u-w\|$
$=\|s+t\|$ where $s=u-P u \in V$ and $t=P u-w \in W$ (why?)
$=\langle s+t, s+t\rangle$
$=\langle s, s\rangle+\langle s, t\rangle+\langle t, s\rangle+\langle t, t\rangle$
$=\|s\|^{2}+\langle s, t\rangle+\overline{\langle s, t\rangle}+\|t\|^{2}$ since $\langle t, s\rangle=\overline{\langle s, t\rangle}$
$=\|s\|^{2}+2 \operatorname{Re}\langle s, t\rangle+\|t\|^{2}$

Now let w_{j} be any element in the orthonormal set, we have
$\left\langle P u, w_{j}\right\rangle=\left\langle\sum_{i=1}^{n}\left\langle u, w_{i}\right\rangle w_{i}, w_{j}\right\rangle=\sum_{i=1}^{n}\left\langle u, w_{i}\right\rangle\left\langle w_{i}, w_{j}\right\rangle=\left\langle u, w_{j}\right\rangle\left\langle w_{j}, w_{j}\right\rangle=\left\langle u, w_{j}\right\rangle 1=\left\langle u, w_{j}\right\rangle$
and $\left\langle s, w_{j}\right\rangle=\left\langle u-P u, w_{j}\right\rangle=\left\langle u, w_{j}\right\rangle-\left\langle P u, w_{j}\right\rangle=\left\langle u, w_{j}\right\rangle-\left\langle u, w_{j}\right\rangle=0$
Now let $t=\sum_{i=1}^{n} a_{i} w_{i}$ be any element of W
Then $\langle s, t\rangle=\left\langle s, \sum_{j=1}^{n} a_{j} w_{j}\right\rangle=\sum_{j=1}^{n} \bar{a}_{j}\left\langle s, w_{j}\right\rangle=\sum_{j=1}^{n} \bar{a}_{j} 0=0$.
This actually shows that $s=u-P u \in W^{\perp} \subseteq V$ (why?)
Finally $\|u-w\|^{2}=\|s\|^{2}+2 \operatorname{Re} 0+\|t\|^{2}=\|s\|^{2}+\|t\|^{2} \geq\|s\|^{2}=\|u-P u\|^{2}$
Therefore $\|u-w\| \geq\|u-P u\|$ for any $w \in W$ and $u \in V$ (why?)
2. Let $V=\mathcal{C}[-1,1]$ and the inner product for $f, g \in V$ be defined by $\int_{-1}^{1} f(x) g(x) d x$. Find the best approximation to e^{x} in $W=\operatorname{span}\left\{1, x, x^{2}\right\}$.

Solution

Let $W=\operatorname{span}\left\{1, x, x^{2}\right\}=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\}$.
First we find an Orthonormal Basis for W using Gram - Schimdt Process(why is it working?)
Let $v_{1}=u_{1}=1$, so $\left\|v_{1}\right\|^{2}=\int_{-1}^{1} 1^{2} d x=[x]_{-1}^{1}=2$ and $\left\|v_{1}\right\|=\sqrt{2}$
So $w_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{2}}$ is the first element in the Orhonormal set
Also $v_{2}=u_{2}-\left\langle u_{2}, w_{1}\right\rangle w_{1}$ and $\left\langle u_{2}, w_{1}\right\rangle=\int_{-1}^{1} x \frac{1}{\sqrt{2}} d x=\frac{1}{2 \sqrt{2}}\left[x^{2}\right]_{-1}^{1}=0$
So $v_{2}=x-0=x$ and $\left\|v_{2}\right\|^{2}=\int_{-1}^{1} x^{2} d x=\frac{1}{3}\left[x^{3}\right]_{-1}^{1}=\frac{2}{3}$ and $\left\|v_{2}\right\|=\frac{\sqrt{2}}{\sqrt{3}}$
Then $w_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{\sqrt{3}}{\sqrt{2}} x$ is the second element in the Orhonormal set

In the same way $v_{3}=u_{3}-\left\langle u_{3}, w_{1}\right\rangle w_{1}-\left\langle u_{3}, w_{2}\right\rangle w_{2}$
and $\left\langle u_{3}, w_{1}\right\rangle=\int_{-1}^{1} x^{2} \frac{1}{\sqrt{2}} d x=\frac{1}{3 \sqrt{2}}\left[x^{3}\right]_{-1}^{1}=\frac{2}{3 \sqrt{2}}=\frac{\sqrt{2}}{3}$
and $\left\langle u_{3}, w_{2}\right\rangle=\int_{-1}^{1} x^{2} \frac{\sqrt{3}}{\sqrt{2}} x d x=\frac{\sqrt{3}}{4 \sqrt{2}}\left[x^{4}\right]_{-1}^{1}=0$
So $v_{3}=x^{2}-\frac{\sqrt{2}}{3} \frac{1}{\sqrt{2}}-0=x^{2}-\frac{1}{3}$ and $\left\|v_{3}\right\|^{2}=\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x=\left[\frac{x^{5}}{5}-\frac{2}{3} \frac{x^{3}}{3}+\frac{1}{9} x\right]_{-1}^{1}=2\left[\frac{1}{5}-\frac{2}{9}+\frac{1}{9}\right]=\frac{2(4)}{5(9)}$
Then $\left\|v_{3}\right\|=\frac{2 \sqrt{2}}{3 \sqrt{5}}$ and $w_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\frac{3 \sqrt{5}}{2 \sqrt{2}}\left(x^{2}-\frac{1}{3}\right)=\frac{\sqrt{5}}{2 \sqrt{2}}\left(3 x^{2}-1\right)$ is the third element in the Orhonormal set
Finallt the Orthonornal Set required by the previous Theorem is $\left\{w_{1}, w_{2}, w_{3}\right\}=\left\{\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{\sqrt{2}} x, \frac{\sqrt{5}}{2 \sqrt{2}}\left(3 x^{2}-1\right)\right\}$ and the best approximation to $e^{x} \in \mathcal{C}[-1,1]$ in $W=\operatorname{span}\left\{1, x, x^{2}\right\}=\operatorname{span}\left\{w_{1}, w_{2}, w_{3}\right\}$ is
$P\left(e^{x}\right)=\sum_{i=1}^{3}\left\langle e^{x}, w_{i}\right\rangle w_{i}$ where
$\left\langle e^{x}, w_{1}\right\rangle=\int_{-1}^{1} e^{x} \frac{1}{\sqrt{2}} d x=\frac{1}{\sqrt{2}}\left[e^{x}\right]_{-1}^{1}=\frac{e-e^{-1}}{\sqrt{2}}$
$\left\langle e^{x}, w_{2}\right\rangle=\int_{-1}^{1} e^{x} \frac{\sqrt{3}}{\sqrt{2}} x d x=\frac{\sqrt{3}}{\sqrt{2}}\left[x e^{x}-e^{x}\right]_{-1}^{1}=\frac{\sqrt{3}}{\sqrt{2}}\left[e^{x}(x-1)\right]_{-1}^{1}=\frac{\sqrt{3}}{\sqrt{2}}\left[e(0)-e^{-1}(-2)\right]=\sqrt{6} e^{-1}$
$\left\langle e^{x}, w_{2}\right\rangle=\int_{-1}^{1} e^{x} \frac{\sqrt{5}}{2 \sqrt{2}}\left(3 x^{2}-1\right) d x$
$=\frac{\sqrt{5}}{2 \sqrt{2}}\left[3\left(x^{2} e^{x}-2\left(x e^{x}-e^{x}\right)\right)-e^{x}\right]_{-1}^{1}=\frac{\sqrt{5}}{2 \sqrt{2}}\left[e^{x}\left(3 x^{2}-6 x+5\right)\right]_{-1}^{1}=\frac{\sqrt{5}}{2 \sqrt{2}}\left[e(2)-e^{-1}(14)\right]=\frac{\sqrt{5}\left(e-7 e^{-1}\right)}{\sqrt{2}}$
Finally
$P\left(e^{x}\right)$
$=\sum_{i=1}^{3}\left\langle e^{x}, w_{i}\right\rangle w_{i}=\frac{e-e^{-1}}{\sqrt{2}} \frac{1}{\sqrt{2}}+\sqrt{6} e^{-1} \frac{\sqrt{3}}{\sqrt{2}} x+\frac{\sqrt{5}\left(e-7 e^{-1}\right)}{\sqrt{2}} \frac{\sqrt{5}}{2 \sqrt{2}}\left(3 x^{2}-1\right)$
$=\frac{e-e^{-1}}{2}+3 e^{-1} x+\frac{5\left(e-7 e^{-1}\right)}{4}\left(3 x^{2}-1\right)$
$=\frac{3\left(-e+11 e^{-1}\right)}{4}+3 e^{-1} x+\frac{15\left(e-7 e^{-1}\right)}{4} x^{2}$
$\approx 0.9962940183+1.103638324 x+0.5367215260 x^{2}$
is the best 2 nd degree polynomial approximation to e^{x} with respect to norm defined by the above inner product.

