1. Show that the matrices $\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right),\left(\begin{array}{cc}3 & -1 \\ 2 & 2\end{array}\right),\left(\begin{array}{cc}1 & -5 \\ -4 & 0\end{array}\right)$ are linearly dependent. Find a basis for $\mathbb{R}^{2 \times 2}$.

## Solution

Here $F=\mathbb{R}$.
We have $2\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)-1\left(\begin{array}{cc}3 & -1 \\ 2 & 2\end{array}\right)+1\left(\begin{array}{cc}1 & -5 \\ -4 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\underline{0}$ and $(-2,-1,1) \neq(0,0,0)$
Therefore $\left\{\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right),\left(\begin{array}{cc}3 & -1 \\ 2 & 2\end{array}\right),\left(\begin{array}{cc}1 & -5 \\ -4 & 0\end{array}\right)\right\}$ is Linearly Dependent.
We show that $B=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is a Basis for $\mathbb{R}^{2 \times 2}$
$a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+c\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\underline{0}$ for $a, b, c, d \in \mathbb{R}$
$\Rightarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
$\Rightarrow(a, b, c, d)=(0,0,0,0)$
$\Rightarrow B$ is Linerly Independent
Also for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{R}^{2 \times 2}$, we have
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+c\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
$\mathbb{R}^{2 \times 2}=\operatorname{Span} B$ (why? )
Therefore $B$ is a Basis for $\mathbb{R}^{2 \times 2}$
2. Show that every set with more than $n$ vectors is linearly dependent in a $n$-dimensional vector space.

## Solution

Let $V$ be the $n$ - dimensional Vector Space over $F$ over with a basis $B=\left\{u_{1}, u_{2} \cdots, u_{n}\right\}$
Let $S=\left\{v_{1}, v_{2} \cdots, v_{m}\right\}$ be the set with $m>n$ elements.
Each $v_{i}$ can be written in the form $v_{i}=\sum_{j=1}^{n} b_{i j} u_{j}$ where $b_{i j} \in F$.
$\sum_{i=1}^{m} a_{i} v_{i}=\underline{0}$ for $a_{i} \in F$.
$\Rightarrow \sum_{i=1}^{m} a_{i} \sum_{j=1}^{n} b_{i j} u_{j}=\underline{0}$
$\Rightarrow \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i} b_{i j}\right) u_{j}=\sum_{j=1}^{n} c_{j} u_{j}=\underline{0}$
$\Rightarrow\left(c_{1}, c_{2}, \cdots, c_{n}\right)=(0,0, \cdots, 0)$ since $B$ is Linearly Independent
Now we have $n$ equations $c_{j}=\sum_{i=1}^{m} a_{i} b_{i j}: j=1,2, \cdots, n$ in $m$ unknowns $a_{i}: i=1,2, \cdots, m$ with $m>n$ Therfore we have a non - trivial solution $\left(a_{1}, a_{2}, \cdots, a_{m}\right) \neq(0,0, \cdots, 0)$ (why?)
So $S$ in Lindearly Dependent.

