1. Show that the matrices $\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$, $\begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & -5 \\ -4 & 0 \end{pmatrix}$ are linearly dependent. Find a basis for $\mathbb{R}^{2 \times 2}$.

Solution

Here $F = \mathbb{R}$. We have $2\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} - 1\begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix} + 1\begin{pmatrix} 1 & -5 \\ -4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \underline{0} \text{ and } (-2, -1, 1) \neq (0, 0, 0)$ Therefore $\{\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & -5 \\ -4 & 0 \end{pmatrix}\}$ is Linearly Dependent. We show that $B = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$ is a Basis for $\mathbb{R}^{2 \times 2}$ $a\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \underline{0}$ for $a, b, c, d \in \mathbb{R}$ $\Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

 $\Rightarrow (a, b, c, d) = (0, 0, 0, 0)$

 \Rightarrow *B* is Linerly Independent

Also for
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
, we have
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
 $\mathbb{R}^{2 \times 2} = \text{Span } B \text{ (why?)}$

Therefore *B* is a Basis for $\mathbb{R}^{2 \times 2}$

MA2033-Linear Algebra-L2S4-2013/14-www.math.mrt.ac.lk/UCJ-20131217-Test3-Solutions-20140131

2. Show that every set with more than *n* vectors is linearly dependent in a *n*-dimensional vector space.

Solution

Let *V* be the *n* – dimensional Vector Space over *F* over with a basis $B = \{u_1, u_2 \cdots, u_n\}$ Let $S = \{v_1, v_2 \cdots, v_m\}$ be the set with m > n elements. Each v_i can be written in the form $v_i = \sum_{j=1}^n b_{ij}u_j$ where $b_{ij} \in F$.

$$\begin{split} & \sum_{i=1}^{m} a_i v_i = \underline{0} \text{ for } a_i \in F. \\ & \Rightarrow \sum_{i=1}^{m} a_i \sum_{j=1}^{n} b_{ij} u_j = \underline{0} \\ & \Rightarrow \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_i b_{ij} \right) u_j = \sum_{j=1}^{n} c_j u_j = \underline{0} \\ & \Rightarrow (c_1, c_2, \cdots, c_n) = (0, 0, \cdots, 0) \text{ since } B \text{ is Linearly Independent} \end{split}$$

Now we have *n* equations $c_j = \sum_{i=1}^m a_i b_{ij}$; $j = 1, 2, \dots, n$ in *m* unknowns a_i : $i = 1, 2, \dots, m$ with m > nTherfore we have a non – trivial solution $(a_1, a_2, \dots, a_m) \neq (0, 0, \dots, 0)$ (why?) So *S* in Lindearly Dependent.