1. Show that $(\mathbb{R}^+, \cdot, \circ)$ over $(\mathbb{R}, +, \cdot)$ is a vector space, where for $a \in \mathbb{R}$ and $x \in \mathbb{R}^+$ the operation \circ is defined as $a \circ x = x^a$. What does the Theorem $(-a) \circ x = \overline{a \circ x}$ look like in this vector space?.

Solution

- 1. (\mathbb{R}^+, \cdot) is an Abelian Group: 1.1 $1 \in \mathbb{R}^+ \Rightarrow \mathbb{R}^+ \neq \emptyset$ 1.2 $\forall a, b \in \mathbb{R}^+; a \cdot b \in \mathbb{R}^+$ 1.3 $\forall a, b \in \mathbb{R}^+; a \cdot (b \cdot c) = (a \cdot b) \cdot c$ 1.4 $\exists 1 \in \mathbb{R}^+, \forall a \in \mathbb{R}^+; a \cdot 1 = 1 \cdot a = a$ 1.5 $\forall a \in \mathbb{R}^+, \exists a^{-1} \in \mathbb{R}^+; a \cdot a^{-1} = a^{-1} \cdot a = 1$ 1.6 $\forall a, b \in \mathbb{R}^+; a \cdot b = b \cdot a$
- 2. $(\mathbb{R}, +, \cdot)$ is a Field(why?)
- 3. $\forall a \in \mathbb{R}, \forall x \in \mathbb{R}^+; a \circ x = x^a \in \mathbb{R}^+$

4.
$$\forall a \in \mathbb{R}, \forall x, y \in \mathbb{R}^+; a \circ (x \cdot y) = (x \cdot y)^a = x^a \cdot y^a = (a \circ x) \cdot (a \circ y)$$

- 5. $\forall a, b \in \mathbb{R}, \forall x \in \mathbb{R}^+; (a+b) \circ x = x^{a+b} = x^a \cdot x^b = (a \circ x) \cdot (b \circ x)$
- 6. $\forall a, b \in \mathbb{R}, \forall x \in \mathbb{R}^+; (a \cdot b) \circ x = x^{a \cdot b} = x^{b \cdot a} = (x^b)^a = a \circ (b \circ x)$
- 7. $\forall x \in \mathbb{R}^+$; $1 \circ x = x^1 = x$

 \therefore (\mathbb{R}^+ , \cdot , \circ) over(\mathbb{R} , +, \cdot) is a Vector Space

Here $(-a) \circ x = x^{-a}$ and $\overline{a \circ x} = (a \circ x)^{-1} = (x^a)^{-1}$ Therefore accoding to the theorem $x^{-a} = (x^a)^{-1}$ 2. Prove that the intersection of sub vector spaces is also a sub vector space.

Solution

Let *S*, *T* be sub vector spaces of *V* over *F*, then

- 1. $0 \in S \text{ and } 0 \in T \Rightarrow 0 \in S \cap T \Rightarrow S \cap T \neq \emptyset$
- 2. $S, T \subseteq V \Rightarrow S \cap T \subseteq V$ Therefore $S \cap T$ is a non empty subset of *V*. Also,
- 3. $x, y \in S \cap T \Rightarrow x, y \in S$ and $x, y \in T \Rightarrow x + y \in S$ and $x + y \in T \Rightarrow x + y \in S \cap T$
- 4. $a \in F$ and $x \in S \cap T \Rightarrow a \in F$ and $x \in S$ and $x \in T \Rightarrow ax \in S$ and $ax \in T \Rightarrow ax \in S \cap T$ Therefore $S \cap T$ is closed under vector addition and scalara multiplication

Therefore $S \cap T$ is a sub vector space of V (by Theorem, why?)