1. Prove that $\lambda_{min} \|x\|^2 \le x^T A x \le \lambda_{max} \|x\|^2$ if $A^T = A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n$

Solution:

Every real symmetric matrix is orthogonally diagonalizable(Theorem) le. there is a orthogonal matrix $Q(Q^{-1} = Q^T)$ consisting of eigenvactors(which are orthonormal) and a diagonal matrix Λ consisting of eigenvalues(real but not necessary distinct) such that $A = Q\Lambda Q^T$

Therefore

$$x^{T}Ax$$

$$= x^{T}QAQ^{T}x$$

$$= (Q^{T}x)^{T}A(Q^{T}x)$$

$$= y^{T}Ay$$

$$= (y_{1} \cdots y_{n}) \begin{pmatrix} \lambda_{1} \cdots 0 \\ \vdots \ddots \vdots \\ 0 \cdots \lambda_{n} \end{pmatrix} \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= (y_{1} \cdots y_{n}) \begin{pmatrix} \lambda_{1}y_{1} \\ \vdots \\ \lambda_{n}y_{n} \end{pmatrix}$$

$$= \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$

$$\leq \lambda_{max} \sum_{i=1}^{n} y_{i}^{2}$$

$$= \lambda_{max} (Q^{T}x)^{T}Q^{T}x$$

$$= \lambda_{max} x^{T}QQ^{T}x$$

$$= \lambda_{max} x^{T}x$$

$$= \lambda_{max} \|x\|^{2}$$

Left hand side can be proved in a similar manner.

Note:

1. When $x = x_{max}$ the eigenvale corresponding to λ_{max} we have $x^{T}Ax = x_{max}^{T}Ax_{max} = x_{max}^{T}\lambda_{max}x_{max} = \lambda_{max}||x_{max}||^{2}$ So we get the equality in the above case. Same on the left hand side. 2. This means that for a real quadratic form to be positive definite: $0 < x^{T}Ax$ (or A > 0) we need $0 < \lambda_{min}||x||^{2}$ or $0 < \lambda_{min}$ or $0 < \lambda$ for all eigenvalues. Similar results hold for other "definite" cases.

3. Columns of *Q* are orthonormal by construction. Rows of *Q* are also orthonormal(why?).

2. Identify the surface $f(x, y, z) = 2x^2 + 12xy + y^2 - 4xz - 8yz - 3z^2 = 0$ by rotating the coordinate axis.

Solution:

We can write the above function as a real quadratic from using a real symmetric matrix

$$f(x, y, z) = 2x^{2} + 12xy + y^{2} - 4xz - 8yz - 3z^{2}$$

$$= (x \quad y \quad z) \begin{pmatrix} 2 & 6 & -2 \\ 6 & 1 & -4 \\ -2 & -4 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = X^{T}AX$$
Where $A = \begin{pmatrix} 2 & 6 & -2 \\ 6 & 1 & -4 \\ -2 & -4 & -3 \end{pmatrix}$ which has the eigenvalue matrix $\Lambda = \begin{pmatrix} 9 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -3 \end{pmatrix}$ and the corresponding eigenvector matrix $P = \begin{pmatrix} -2 & -1 & 2 \\ -2 & 2 & -1 \\ 1 & 2 & 2 \end{pmatrix}$. The columns of P are orthogonal. We can make the columns of P orhonormal by dividing each column by its magnitude to make a orthogonal matrix
$$Q = \begin{pmatrix} -2/3 & -1/3 & 2/3 \\ -2/3 & 2/3 & -1/3 \end{pmatrix}$$
. This is the orthogonal diagonalization $AQ = Q\Lambda$ or $A = Q\Lambda Q^{-1} = Q\Lambda Q^{T}$ we

 $Q = \begin{pmatrix} -2/3 & 2/3 & -1/3 \\ 1/3 & 2/3 & 2/3 \end{pmatrix}$. This is the orthogonal diagonalization $AQ = Q\Lambda$ or $A = Q\Lambda Q^{-1} = Q\Lambda Q^T$ we

require

By the discussion on Q1, with $X' = Q^T X$, we can write

$$f(x, y, z) = X^{T}AX = X'^{T}AX' = (x' \quad y' \quad z') \begin{pmatrix} 9 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = 9x'^{2} - 6y'^{2} - 3z'^{2} = 0$$

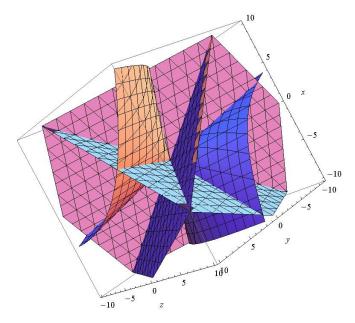
or $9x'^2 = 6y'^2 + 3z'^2$. This is a cone $(9x'^2 = r^2)$ along the x' axix and ellipses $(6y'^2 + 3z'^2 = r^2)$ on the y'z' plane making f(x, y, z) = 0 an elliptical cone.

Note:

Transformation from the xyz coordinates to x'y'z' coordinates is given by $X' = Q^T X$ or

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -2/3 & -1/3 & 2/3 \\ -2/3 & 2/3 & -1/3 \\ 1/3 & 2/3 & 2/3 \end{pmatrix}^T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2/3 & -2/3 & 1/3 \\ -1/3 & 2/3 & 2/3 \\ 2/3 & -1/3 & 2/3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{2}{3}x - \frac{2}{3}y + \frac{1}{3}z \\ -\frac{1}{3}x + \frac{2}{3}y + \frac{2}{3}z \\ \frac{2}{3}x - \frac{1}{3}y + \frac{2}{3}z \end{pmatrix}$$

The x' axis is perpendicular to the plane $-\frac{2}{3}x - \frac{2}{3}y + \frac{1}{3}z = 0$ and so on. In other words x', y', z' axis will be along the intersection of the 3 planes.



Note:

We have that the eigenvalues of A are 9, -6, -3. Therefore from the discussion on Note from Q1, we see that the quadratic form $f(x, y, z) = X^T A X$ is indefinite, which means that it will attain both positive, negative values in 4D. The graph above is the image when it is 0.