1. Prove that $\lambda_{\text {min }}\|x\|^{2} \leq x^{T} A x \leq \lambda_{\text {max }}\|x\|^{2}$ if $A^{T}=A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n}$

Solution:

Every real symmetric matrix is orthogonally diagonalizable(Theorem) le. there is a orthogonal matrix $Q\left(Q^{-1}=Q^{T}\right)$ consisting of eigenvactors(which are orthonormal) and a diagonal matrix Λ consisting of eigenvalues(real but not necessary distinct) such that $A=Q \Lambda Q^{T}$

Therefore

$$
x^{T} A x
$$

$$
=x^{T} Q \Lambda Q^{T} x
$$

$$
=\left(Q^{T} x\right)^{T} \Lambda\left(Q^{T} x\right)
$$

$$
=y^{T} \Lambda y
$$

$$
=\left(\begin{array}{lll}
y_{1} & \cdots & y_{n}
\end{array}\right)\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

$$
=\left(\begin{array}{lll}
y_{1} & \cdots & y_{n}
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} y_{1} \\
\vdots \\
\lambda_{n} y_{n}
\end{array}\right)
$$

$$
=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}
$$

$$
\leq \lambda_{\max } \sum_{i=1}^{n} y_{i}^{2}
$$

$$
=\lambda_{\max } y^{T} y
$$

$$
=\lambda_{\max }\left(Q^{T} x\right)^{T} Q^{T} x
$$

$$
=\lambda_{\max } x^{T} Q Q^{T} x
$$

$$
=\lambda_{\max } x^{T} I x
$$

$$
=\lambda_{\max } x^{T} x
$$

$$
=\lambda_{\max }\|x\|^{2}
$$

Left hand side can be proved in a similar manner.

Note:

1. When $x=x_{\text {max }}$ the eigenvale corresponding to $\lambda_{\text {max }}$ we have $x^{T} A x=x_{\max }^{T} A x_{\text {max }}=x_{\text {max }}^{T} \lambda_{\text {max }} x_{\text {max }}=\lambda_{\text {max }}\left\|x_{\text {max }}\right\|^{2}$
So we get the equality in the above case. Same on the left hand side.
2. This means that for a real quadratic form to be positive definite: $0<x^{T} A x$ (or $A>0$) we need $0<\lambda_{\text {min }}\|x\|^{2}$ or $0<\lambda_{\text {min }}$ or $0<\lambda$ for all eigenvalues.
Similar results hold for other "definite" cases.
3. Columns of Q are orthonormal by construction. Rows of Q are also orthonormal(why?).
4. Identify the surface $f(x, y, z)=2 x^{2}+12 x y+y^{2}-4 x z-8 y z-3 z^{2}=0$ by rotating the coordinate axis.

Solution:

We can write the above function as a real quadratic from using a real symmetric matrix
$f(x, y, z)=2 x^{2}+12 x y+y^{2}-4 x z-8 y z-3 z^{2}$
$=\left(\begin{array}{lll}x & y & z\end{array}\right)\left(\begin{array}{ccc}2 & 6 & -2 \\ 6 & 1 & -4 \\ -2 & -4 & -3\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=X^{T} A X$
Where $A=\left(\begin{array}{ccc}2 & 6 & -2 \\ 6 & 1 & -4 \\ -2 & -4 & -3\end{array}\right)$ which has the eigenvalue matrix $\Lambda=\left(\begin{array}{ccc}9 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -3\end{array}\right)$ and the corresponding eigenvector matrix $P=\left(\begin{array}{ccc}-2 & -1 & 2 \\ -2 & 2 & -1 \\ 1 & 2 & 2\end{array}\right)$. The columns of P are orthogonal. We can make the columns of P orhonormal by dividing each column by its magnitude to make a orthogonal matrix
$Q=\left(\begin{array}{ccc}-2 / 3 & -1 / 3 & 2 / 3 \\ -2 / 3 & 2 / 3 & -1 / 3 \\ 1 / 3 & 2 / 3 & 2 / 3\end{array}\right)$. This is the orthogonal diagonalization $A Q=Q \Lambda$ or $A=Q \Lambda Q^{-1}=Q \Lambda Q^{T}$ we require
By the discussion on Q1, with $X^{\prime}=Q^{T} X$, we can write

$$
f(x, y, z)=X^{T} A X=X^{\prime T} \Lambda X^{\prime}=\left(\begin{array}{lll}
x^{\prime} & y^{\prime} & z^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
9 & 0 & 0 \\
0 & -6 & 0 \\
0 & 0 & -3
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=9 x^{\prime 2}-6 y^{\prime 2}-3 z^{\prime 2}=0
$$

or $9 x^{\prime 2}=6 y^{\prime 2}+3 z^{\prime 2}$. This is a cone $\left(9 x^{\prime 2}=r^{2}\right)$ along the x^{\prime} axix and ellipses $\left(6 y^{\prime 2}+3 z^{\prime 2}=r^{2}\right)$ on the $y^{\prime} z^{\prime}$ plane making $f(x, y, z)=0$ an elliptical cone.

Note:

Transformation from the $x y z$ coordinates to $x^{\prime} y^{\prime} z^{\prime}$ coordinates is given by $X^{\prime}=Q^{T} X$ or

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
-2 / 3 & -1 / 3 & 2 / 3 \\
-2 / 3 & 2 / 3 & -1 / 3 \\
1 / 3 & 2 / 3 & 2 / 3
\end{array}\right)^{T}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
-2 / 3 & -2 / 3 & 1 / 3 \\
-1 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & 2 / 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-\frac{2}{3} x-\frac{2}{3} y+\frac{1}{3} z \\
-\frac{1}{3} x+\frac{2}{3} y+\frac{2}{3} z \\
\frac{2}{3} x-\frac{1}{3} y+\frac{2}{3} z
\end{array}\right)
$$

The x^{\prime} axis is perpendicular to the plane $-\frac{2}{3} x-\frac{2}{3} y+\frac{1}{3} z=0$ and so on. In other words $x^{\prime}, y^{\prime}, z^{\prime}$ axis will be along the intersection of the 3 planes.

Note:

We have that the eigenvalues of A are $9,-6,-3$. Therefore from the discussion on Note from Q1, we see that the quadratic form $f(x, y, z)=X^{T} A X$ is indefinite, which means that it will attain both positive, negative values in 4D. The graph above is the image when it is 0 .

