1. Let $a b=$ last two digits of your index number.

Solve the differential equation $\frac{d^{2} u}{d t^{2}}+\frac{d u}{d t}+u=0, u(0)=a, u^{\prime}(0)=b$
as a system of differential equations $\dot{y}=A y, y(0)=\left(u(0), u^{\prime}(0)\right)^{T}$

Solution:

Assume $a b=12$
Let $\dot{u}=\frac{d u}{d t}=v$ so we have
$\dot{u}=v, u(0)=a$ and $\dot{v}=-u-v, v(0)=u^{\prime}(0)=b$.
We can write the system as
$\binom{\dot{u}}{\dot{v}}=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)\binom{u}{v}$ with $\binom{u(0)}{v(0)}=\binom{a}{b}$ or
$\dot{y}=A y$ with $y(0)=\binom{a}{b}$ where $y=\binom{u}{v}$ and $A=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$
Let $y=x e^{w t}$ then we have $\dot{y}=x w e^{w t}=A y=A x e^{w t}$ or $A x=w x=\lambda x$
So $w=\lambda$ are the eigenvalues of A and x are the corresponding eigenvectors.
We have $\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}-\lambda & 1 \\ -1 & -1-\lambda\end{array}\right|=\lambda(1+\lambda)+1=\lambda^{2}+\lambda+1=0 \Rightarrow \lambda=\frac{-1 \pm i \sqrt{3}}{2}$
For $\lambda_{1}=\frac{-1+i \sqrt{3}}{2}$ we have

$-\lambda_{1} p+q=0 \Rightarrow x=\binom{p}{q}=\binom{p}{\lambda_{1} p}=p\binom{1}{\lambda_{1}}$ so let $x_{1}=\binom{1}{\lambda_{1}}$
In the same way for $\lambda_{2}=\frac{-1-i \sqrt{3}}{2}$ we have $x_{2}=\binom{1}{\lambda_{2}}$
Now since the differential equation is linear, the general solution will be
$y=y(t)=a_{1} x_{1} e^{\lambda_{1} t}+a_{2} x_{2} e^{\lambda_{2} t}$ where a_{1}, a_{2} are constants to be determined.
We can also write the solution as

$$
\begin{aligned}
& y(t)=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\binom{a_{1} e^{\lambda_{1} t}}{a_{2} x_{2} e^{\lambda_{2} t}}=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right)\binom{a_{1}}{a_{2}}=P\left(\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right)\binom{a_{1}}{a_{2}} \\
& y(0)=P\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{a}{b} \Rightarrow P\binom{a_{1}}{a_{2}}=\binom{a}{b} \Rightarrow\binom{a_{1}}{a_{2}}=P^{-1}\binom{a}{b}=\left(\begin{array}{cc}
1 & 1 \\
\lambda_{1} & \lambda_{2}
\end{array}\right)^{-1}\binom{1}{2}=\frac{1}{\lambda_{2}-\lambda_{1}}\left(\begin{array}{cc}
\lambda_{2} & -1 \\
-\lambda_{1} & 1
\end{array}\right)\binom{1}{2} \\
& \binom{a_{1}}{a_{2}}=\frac{1}{-i \sqrt{3}}\binom{\lambda_{2}-2}{-\lambda_{1}+2}=\frac{1}{-i \sqrt{3}}\binom{\frac{-5-i \sqrt{3}}{2}}{\frac{5-i \sqrt{3}}{2}}=\binom{\frac{-5 i+\sqrt{3}}{2 \sqrt{3}}}{\frac{5 i+\sqrt{3}}{2 \sqrt{3}}}
\end{aligned}
$$

So $a_{1}=\frac{-5 i+\sqrt{3}}{2 \sqrt{3}}$ and $a_{2}=\frac{5 i+\sqrt{3}}{2 \sqrt{3}}$
Note: Check whether you get a real solutions

2 . Let $x=$ (last digit of your index number) $\operatorname{Mod} 3+1$. Select matrix number x and call it A.

$$
\left(\begin{array}{ccc}
-11 & -10 & 5 \\
5 & 4 & -5 \\
-20 & -20 & 4
\end{array}\right),\left(\begin{array}{ccc}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right),\left(\begin{array}{ccc}
4 & 1 & -1 \\
2 & 5 & -2 \\
1 & 1 & 2
\end{array}\right)
$$

Solve the system of differential equations $\ddot{y}=A y, y(0)=(1,2,3)^{T}, y^{\prime}(0)=(4,5,6)^{T}$.

Solution:

Assume $A=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$ so we have the eigenvalues and the corresponding eigenvectors
$\lambda_{1}=-2, x_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ and $\lambda_{2}=-2, x_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $\lambda_{3}=-2, x_{3}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$
With $y=x e^{w t}$ we have $\dot{y}=x w e^{w t}$ and $\ddot{y}=x w^{2} e^{w t}$ or $\ddot{y}=x w^{2} e^{w t}=A y=A x e^{w t}$ or $A x=w^{2} x=\lambda x$ So $w^{2}=\lambda$ (ie $w= \pm \sqrt{\lambda}$) are the eigenvalues of A and x are the corresponding eigenvectors.
Now since the differential equation is linear, the general solution will be
$y=y(t)=a_{1} x_{1} e^{\sqrt{\lambda_{1}} t}+b_{1} x_{1} e^{-\sqrt{\lambda_{1}} t}+a_{2} x_{2} e^{\sqrt{\lambda_{2}} t}+b_{2} x_{2} e^{-\sqrt{\lambda_{2}} t}+a_{3} x_{3} e^{\sqrt{\lambda_{3}} t}+b_{3} x_{3} e^{-\sqrt{\lambda_{3}} t}$
where $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ are constants to be determined. We can also write the solution as
$y=y(t)=\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)\left(\begin{array}{l}a_{1} x_{1} e^{\sqrt{\lambda_{1}} t}+b_{1} x_{1} e^{-\sqrt{\lambda_{1}} t} \\ a_{2} x_{2} e^{\sqrt{\lambda_{2}} t}+b_{2} x_{2} e^{-\sqrt{\lambda_{2}} t} \\ a_{3} x_{3} e^{\sqrt{\lambda_{3}} t}+b_{3} x_{3} e^{-\sqrt{\lambda_{3}} t}\end{array}\right)=P\left(\begin{array}{ccccc}e^{\sqrt{\lambda_{1}} t} e^{-\sqrt{\lambda_{1}} t} & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{\sqrt{\lambda_{2}} t} e^{-\sqrt{\lambda_{2}} t} & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{\sqrt{\lambda_{3}} t} e^{-\sqrt{\lambda_{3}} t}\end{array}\right)\left(\begin{array}{l}a_{1} \\ b_{1} \\ a_{2} \\ b_{2} \\ a_{3} \\ b_{3}\end{array}\right)$
Therefore
$y(0)=P\left(\begin{array}{l}110000 \\ 001100 \\ 000011\end{array}\right)\left(\begin{array}{l}a_{1} \\ b_{1} \\ a_{2} \\ b_{2} \\ a_{3} \\ b_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \Rightarrow\left(\begin{array}{l}110000 \\ 001100 \\ 000011\end{array}\right)\left(\begin{array}{l}a_{1} \\ b_{1} \\ a_{2} \\ b_{2} \\ a_{3} \\ b_{3}\end{array}\right)=P^{-1}\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$
And

$$
y^{\prime}(t)=P\left(\begin{array}{cccccc}
\sqrt{\lambda_{1}} e^{\sqrt{\lambda_{1}} t}-\sqrt{\lambda_{1}} e^{-\sqrt{\lambda_{1}} t} & 0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{\lambda_{2}} e^{\sqrt{\lambda_{2}} t}-\sqrt{\lambda_{2}} e^{-\sqrt{\lambda_{2}} t} & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{\lambda_{3}} e^{\sqrt{\lambda_{3}} t}-\sqrt{\lambda_{3}} e^{-\sqrt{\lambda_{3}} t}
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
b_{1} \\
a_{2} \\
b_{2} \\
a_{3} \\
b_{3}
\end{array}\right)
$$

Therefore

$$
\begin{aligned}
& y^{\prime}(0)=P\left(\begin{array}{cccccc}
\sqrt{\lambda_{1}}-\sqrt{\lambda_{1}} & 0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{\lambda_{2}}-\sqrt{\lambda_{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{\lambda_{3}}-\sqrt{\lambda_{3}}
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
b_{1} \\
a_{2} \\
b_{2} \\
a_{3} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{ccccc}
\sqrt{\lambda_{1}}-\sqrt{\lambda_{1}} & 0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{\lambda_{2}}-\sqrt{\lambda_{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{\lambda_{3}}-\sqrt{\lambda_{3}}
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
b_{1} \\
a_{2} \\
b_{2} \\
a_{3} \\
b_{3}
\end{array}\right)=P^{-1}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right)
\end{aligned}
$$

Finally we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 1 \\
\sqrt{\lambda_{1}} & -\sqrt{\lambda_{1}}
\end{array}\right)\binom{a_{1}}{b_{1}}=\binom{c_{1}}{d_{1}} \Rightarrow\binom{a_{1}}{b_{1}}=\left(\begin{array}{cc}
1 & 1 \\
\sqrt{\lambda_{1}} & -\sqrt{\lambda_{1}}
\end{array}\right)^{-1}\binom{c_{1}}{d_{1}} \\
& \left(\begin{array}{cc}
1 & 1 \\
\sqrt{\lambda_{2}} & -\sqrt{\lambda_{2}}
\end{array}\right)\binom{a_{2}}{b_{2}}=\binom{c_{2}}{d_{3}} \Rightarrow\binom{a_{2}}{b_{2}}=\left(\begin{array}{cc}
1 & 1 \\
\sqrt{\lambda_{2}} & -\sqrt{\lambda_{2}}
\end{array}\right)^{-1}\binom{c_{2}}{d_{2}} \\
& \left(\begin{array}{cc}
1 & 1 \\
\sqrt{\lambda_{3}} & -\sqrt{\lambda_{3}}
\end{array}\right)\binom{a_{3}}{b_{3}}=\binom{c_{3}}{d_{3}} \Rightarrow\binom{a_{3}}{b_{3}}=\left(\begin{array}{cc}
1 & 1 \\
\sqrt{\lambda_{3}} & -\sqrt{\lambda_{3}}
\end{array}\right)^{-1}\binom{c_{3}}{d_{3}}
\end{aligned}
$$

Note: What is the solution if A is not diagonalizable?

