Definition: (G,*) is a **Group** \Leftrightarrow

- 1. $G \neq \emptyset$: set is non empty
- 2. $\forall a, b \in G$; $a * b \in G$: binary operation is close
- 3. $\forall a, b, c \in G; a * (b * c) = (a * b) * c$: operation is associative
- 4. $\exists e \in G, \forall a \in G; a * e = e * a = a$: there is an identity element
- 5. $\forall a \in G, \exists \overline{a} \in G; a * \overline{a} = \overline{a} * a = e$: each element has its inverse element

Example: Which of the following are groups?

- 1. $(\mathbb{R}, +)$: set of real numbers with addition
- 2. (\mathbb{R}, \cdot) : set of real numbers with multiplication
- 3. $(\{1,0\},+)$: Boolean algebra with OR
- 4. $(\{1,0\},\cdot)$: Boolean algebra with AND
- 5. $(\mathbb{R}^{2\times 2}, +)$: set of 2×2 matrices with real entries with addition
- 6. $(\mathbb{R}^{2\times 2}, \cdot)$: set of 2 × 2 matrices with real entries with multiplication
- 7. $GL_n(\mathbb{R})$: set of invertible $n \times n$ matrices under multiplication
- 8. set of invertible functions under composition.
- 9. set of 4th roots of 1 under multiplication
- 10. D_3 : symmetry group of equilateral triangle under composition
- 11. $E = \{(x, y): y^2 = x^3 + Ax + B, 4A^3 + 27B^2 \neq 0\} \cup \{\mathcal{O}\}$: elliptic curve group, \mathcal{O} : point at infinity

Theorem: (G,*) is a **group** \Rightarrow

- 1. *e* is unique
- 2. \bar{a} is unique
- 3. $\forall a \in G; \overline{\overline{a}} = a$
- 4. $\forall a, b \in G; \overline{a * b} = \overline{b} * \overline{a}$
- 5. $a * b = a * c \Longrightarrow b = c$: right cancellation
- 6. $b * a = c * a \Longrightarrow b = c$: left cancellation

Definition: (G,*) is an **Abelian Group** \Leftrightarrow

- 1. (G,*) is a group
- 2. $\forall a, b \in G; a * b = b * a$: commutative

Example: which of the above examples are Abelian Groups?

Definition: $(F, +, \cdot)$ is a **Field** \Leftrightarrow

- 1. (F, +) is an Abelian Group
- 2. $(F \setminus \{0\}, \cdot)$ is an Abelian Group: 0 is the identity for +
- 3. $\forall a, b \in F; a \cdot b \in F$: closed under \cdot
- 4. $\forall a, b, c \in F; a \cdot (b + c) = (a \cdot b) + (a \cdot c)$: distributive

Note : we also use the following

- 1. -a is the inverse of a for +
- 2. a^{-1} is the inverse of a for \cdot
- 3. 1 is the multiplicative identity for ·

Example: See which of the following are fields

- 1. $(\mathbb{R}, +, \cdot)$
- **2**. (ℝ,·,+)
- 3. $(\mathbb{C}, +, \cdot)$: set of complex numbers with addition and multiplication
- 4. $(\mathbb{Q}, +, \cdot)$: set of rational numbers with addition and multiplication
- 5. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$
- 6. $(\{1,0\},+,\cdot)$
- 7. $({T, F}, \land, \lor)$: set of logic with AND and OR
- 8. $(GL_n(\mathbb{R}), +, \cdot)$
- 9. (ξ, \cup, \cap) : universal set with union and intersection
- 10. \mathbb{F}_p : finite field with prime p elements under *mod* p addition and multiplication

Theorem: If *p* is prime and *a* is an integer then $a^p \equiv a \pmod{p}$ **Theorem**: $(F, +, \cdot)$ is a **Field** $\Rightarrow \forall a \in F; 0 \cdot a = 0$

Definition: $(V, *, \circ)$ is a vector space over $(F, +, \cdot)$

- 1. (V,*) is an Abelian Group
- 2. $(F, +, \cdot)$ is a Field
- 3. $\forall a \in F, \forall x \in V; a \circ x \in V$: closed under scalar multiplication
- 4. $\forall a, b \in F, \forall x \in V; (a + b) \circ x = (a \circ x) * (b \circ x)$: distributive w.r.t. scalar addition
- 5. $\forall a \in F, \forall x, y \in V; a \circ (x * y) = (a \circ x) * (a \circ y)$: distributive w.r.t. vector addition
- 6. $\forall a, b \in F, \forall x \in V; (a \cdot b) \circ x = a \circ (b \circ x)$: associative w.r.t. scalar product
- 7. $\forall x \in V$; $1 \circ x = x$

Note: the above four operations are functions such that

- $+: F \times F \rightarrow F:$ scalar addition
- $:: F \times F \rightarrow F$: scalar product
- $*: V \times V \rightarrow V:$ vector addtiopn

 $\circ: F \times V \to V$: scalar multiplication

Example: which of the above examples are Vector Spaces?

- 1. $(\mathbb{R}^n, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$: set of vectors with *n* real entries
- 2. $(\mathbb{R}, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$
- 3. $(\mathbb{C}, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$
- 4. $(\mathbb{R}, +, \cdot)$ over $(\mathbb{C}, +, \cdot)$
- 5. $(\mathbb{C}, +, \cdot)$ over $(\mathbb{C}, +, \cdot)$
- 6. $(\mathbb{R}[x], +, \cdot)$ over $(\mathbb{R}, +, \cdot)$: set of polynomial in x with real coefficients
- 7. $(V, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$: set of solution of a linear differential equation
- 8. $(C[0,1], +, \cdot)$ over $(\mathbb{R}, +, \cdot)$: continuous functions on [0,1]

Theorem:

 $(V,*,\circ)$ over $(F,+,\cdot)$ is a vector space \Rightarrow

- 1. $\forall x \in V; 0 \circ x = e$
- 2. $\forall a \in F; a \circ e = e$
- 3. $\forall a \in V, \forall a \in F; (-a) \circ x = (a \circ x)$
- 4. $a \circ x = e \Rightarrow a = 0 \text{ or } x = e$

Definition:

 $(S,*,\circ)$ is a sub vector space of $(V,*,\circ)$ over $(F,+,\cdot) \Leftrightarrow$

- 1. $(V,*,\circ)$ is a vector space over $(F, +, \cdot)$
- 2. $S \subseteq V$
- 3. $(S,*,\circ)$ is a vector space over $(F, +, \cdot)$

Theorem:

- 1. $(V,*,\circ)$ is a vector space over $(F,+,\cdot)$
- 2. $S \subseteq V$: subset
- 3. $\forall x, y \in V; x * y \in V$: closed under addition
- 4. $\forall a \in F, \forall x, y \in V; a \circ x \in V$: closed under scalar multiplication \Rightarrow
- 1. $(S,*,\circ)$ is a vector space over $(F,+,\cdot)$
- 2. $(S,*,\circ)$ is a sub vector space of $(V,*,\circ)$ over $(F,+,\cdot)$

Note: When there is no threat of confusion we may use the following

- 1. x * y = x + y
- 2. $a \cdot b = ab$
- 3. $a \circ x = ax$
- 4. $\bar{x} = -x$
- 5. e = 0

Example: Write the rules for vector space with this new notation V is a vector space over F (or V is a F-vector space) $B \subseteq V, u_i \in B, a_i \in F$

Definition: span $B = \{\sum_{i} a_{i}u_{i} : a_{i} \in F, u_{i} \in B\}$: set of all possible linear combinations of the elements of B.

Theorem:

- 1. *span B* is a subspace of *V*
- 2. *span B* is the smallest subspace of *V* containing *B*

Definition: *B* is linearly independent \Leftrightarrow

 $\forall \underline{a} = (a_1, \cdots, a_n) \in F^n; L(\underline{a}) = \sum_i a_i u_i = \underline{0} \Rightarrow \underline{a} = \underline{0}$

Definition: *B* is **linearly dependent** \Leftrightarrow *B* is not linearly independent

Theorem:

- 1. $|B| \ge 2$
- 2. *B* is linearly dependent

 \Rightarrow At least one element of *B* can be written as a linear combination of the other elements

Definition: $B \subseteq V$ is a basis for $V \Leftrightarrow$

- 1. span B = V
- 2. *B* is linearly independent

Example: Find a basis for the following vector spaces

- 1. \mathbb{R}^n
- 2. set of solution of a linear differential equation
- 3. $\mathcal{P}_n(\mathbb{R})$: set of polynomials with degree *n* or less
- 4. $\mathbb{R}[x] = P(\mathbb{R})$: set polynomials with real coefficients
- 5. set of Taylor series expandable functions on [0,1]
- 6. set of Fourier series expandable functions on [0,1]
- 7. C[0,1]: continuous functions on [0,1]

Definition:

- 1. *B* is a basis for *V*
- 2. |B| is finite
- \Leftrightarrow *V* is finite dimensional

Note: From here on we will work with finite dimensional vector spaces

Theorem:

- 1. *V* is finite dimensional
- 2. B is a basis for V

 \Rightarrow each vector in V can be uniquely expressed as a linear combination of the vectors in B

Theorem:

- 1. *V* is finite dimensional
- 2. *B* is a basis for *V*

 \Rightarrow every set with more than |B| vectors is linearly dependent

Theorem: *V* is finite dimensional \Rightarrow any two bases for *V* have the same size

Definition: Dimension

- 1. *V* is finite dimensional
- 2. *B* is a basis for *V*

 $\Leftrightarrow \dim V = |B|$

Definition: $dim\{\underline{0}\} = 0$

Definition: standard basis for \mathbb{R}^n $B = \{e_i\}_n$ $e_i = (O_{1 \times (i-1)}, 1, O_{1 \times (n-i)})$ V is a vector space over F $F = \mathbb{C}$, $u, v, w \subseteq V, a \in F$

Definition: inner product

- 1. $\langle \cdot, \cdot \rangle : V \times V \to F = \mathbb{C}$ is a function
- 2. $\langle u, v \rangle = \overline{\langle v, u \rangle}$
- 3. $\langle u + v, w \rangle = \langle u, v \rangle + \langle v, w \rangle$
- 4. $\langle au, v \rangle = a \langle u, v \rangle$
- 5. $\langle u, u \rangle \ge 0$ and $\langle u, u \rangle = 0 \Leftrightarrow u = \underline{0}$
- $\Leftrightarrow \langle \cdot, \cdot \rangle$ is an inner product

Note: we have $a = \overline{a}$ when $F = \mathbb{R}$

Definition: *V* is an **inner product vector space** \Leftrightarrow *V* has an inner product defined

Theorem:

- 1. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$
- 2. $\langle u, av \rangle = a \langle u, v \rangle$
- 3. $\langle \underline{0}, u \rangle = \langle u, \underline{0} \rangle = 0$

Example: Show that the following are inner products

- 1. $u, v \in \mathbb{R}^n, F = \mathbb{R}; \langle u, v \rangle = u \cdot v$
- 2. $u, v \in \mathbb{C}^n, F = \mathbb{R}; \langle u, v \rangle = u \cdot \overline{v}$
- 3. $f, g \in C([a, b]), F = \mathbb{R}; \langle f, g \rangle = \int_a^b f(x)g(x)dx$

Definition: Norm induced by the inner product $||u|| = \sqrt{\langle u, u \rangle}$

Theorem:

- 1. $||u + v|| \le ||u|| + ||v||$: triangular inequality
- 2. $|\langle u, v \rangle| \le ||u|| ||v||$: Cauchy-Schwarz inequality

Definition: *u* and *v* are orthogonal $\Leftrightarrow \langle u, v \rangle = 0$

Definition: u and v are orthonormal \Leftrightarrow

- 1. u and v are orthogonal
- 2. ||u|| = ||v|| = 1

Definition: *B* is orthogonal $\Leftrightarrow \forall i \neq j$; u_i and u_j are orthogonal

Definition: *B* is orthonormal $\Leftrightarrow \forall i \neq j$; u_i and u_j are orthonormal

Theorem: $\langle \sum_{i=1}^{n} a_i u_i, v \rangle = \sum_{i=1}^{n} a_i \langle u_i, v \rangle$

Theorem:

- 1. *B* is orthogonal
- 2. <u>0</u> ∉ *B*
- \Rightarrow *B* is linearly independent

Theorem: If $\{u_i\}$ is an orthonormal basis for a vector space V then any $v \in V$ can be written as $v = \sum_{i=1}^{n} \langle u_i, v \rangle u_i$

Definition: Orthogonal complement of a subspace W in an inner product space V $W^{\perp} = \{u \in V : \langle u, w \rangle = 0 \ \forall w \in W\}$

Theorem: W^{\perp} is a subspace of V

Theorem: Let *V* be an inner product space and *W* be a subspace spanned by the orthonormal set $\{w_1, w_2, \dots, w_n\}$. Then we can write $u = Pu + Qu \in V$ where $Pu = \sum_{i=1}^n \langle u, w_i \rangle \langle w_i \rangle \langle w_i \rangle \langle w_i \rangle$ and $Qu \in W^{\perp}$

Example: Let $V = \mathbb{R}^3$ and $W = span\{(1,0,0), (0,1,0)\}$. Find Pu and Qu for $u = (a, b, c) \in V$.

Theorem: *Pu* is the best approximation in *W* to *u* with respect to the norm defined by the inner product.

Example:

1. Let V = C[-1,1] and the inner product for $f, g \in V$ be defined by $\int_{-1}^{1} f(x)g(x)dx$. Find the best approximation to e^{x} in $W = span\{1, x, x^{2}\}$. 2. Let $V = C[-\pi, \pi]$ and the inner product for $f, g \in V$ be defined by by $\int_{-\pi}^{\pi} f(x)\overline{g(x)} dx$. Find the best approximation to f in $W = span\{e^{ijx}\}_{j=1}^{n}$.

Theorem: Gram-Schmidt Process

Let $U = \{u_1, u_2, \dots, u_n\}$ be linearly independent in an inner product space. Then if $v_j = u_j - \sum_{i=1}^{j-1} \langle u_i, w_i \rangle w_i$ for $j = 1, 2, \dots, n$ $w_j = \frac{v_j}{\|v_j\|}$ for $j = 1, 2, \dots, n$ Then $W = \{w_1, w_2, \dots, w_n\}$ is orthonormal and spanU = spanW

V, W are vector spaces with the common field F $u, v \in V, r \in F$ **Definition: Linear Transformation**

T is a linear transformation \Leftrightarrow

- 1. $T: V \to W$ is a function
- 2. T(u + v) = T(u) + T(v)
- 3. T(ru) = rT(u)

Example: Show that the following are linear transformation

- 1. $T: \mathbb{R}^2 \to \mathbb{R}^3; T: (x, y) \mapsto (x + y, 2x + y, 3x + y)$
- 2. $T: C(\mathbb{R}) \to \mathbb{R}; T: u \mapsto \int_0^1 u(t) dt$
- 3. $T: \mathbb{P}_n(\mathbb{R}) \mapsto \mathbb{P}_n(\mathbb{R}); T: p(x) \mapsto xp'(x) + p(x)$

Theorem:

- 1. T(au + bv) = aT(u) + bT(v)
- 2. $T(\underline{0}) = \underline{0}$
- 3. T(-u) = -T(u)

Definition:

- 1. ker $T = \{u | T(u) = \underline{0} \text{ and } u \in V\}$: Kernal
- 2. ran $T = T(V) = \{T(u) | u \in V\}$: Range
- 3. dom T = V: Domain

Theorem:

- 1. ker T is a subspace of V
- 2. ran *T* is a subspace of *W*

Definition:

- 1. null $T = \dim (\ker T)$: Nullity
- 2. rank $T = \dim (\operatorname{ran} T)$: Rank

Example: Find null *T* and rank *T* of $T: \mathbb{R}^3 \to \mathbb{R}^3$; $T: (x, y, z) \mapsto (x - y + 2z, 2x + y, -x - 2y + 2z)$

Theorem: Dimension theorem $\dim(\operatorname{dom} T) = \operatorname{rank} T + \operatorname{null} T$

Example: Coordinate rotation

(x, y) coordinate system is rotated anticlockwise by an angle θ to get a new coordinate system (X, Y). The associated linear transformation is

$$T: \mathbb{R}^2 \to \mathbb{R}^2; \ T: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} X \\ y \end{pmatrix} = \begin{pmatrix} x \cos \theta + y \sin \theta \\ -x \sin \theta + y \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$B = \{u_1, u_2, \cdots, u_n\} = \{u\}_i \qquad (B) = (u_1, u_2, \cdots, u_n) = (u_i)_n = (u_i)_{1 \times n}$$
$$(B)^T = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = (u_i)_n^T = (u_i)_{1 \times n}^T \qquad (u_{ij})_{m \times n} = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ u_{21} & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{m1} & u_{m2} & \cdots & u_{mn} \end{pmatrix}$$

 $T: V \rightarrow W$ is a linear transformation F is the common field of V and W $B_V = \{u_i\}_n$ is a basis for V, $B_W = \{w_i\}_m$ is a basis for W

Theorem:

 $\exists A \in F^{m \times n}$; $(T(u_i))_n = (w_i)_m A$

Definition: Matrix of a linear transformation

 $A = T_{(B_V),(B_W)} \in F^{m \times n}$

Theorem:
$$v = \sum_i b_i u_i \in V \Rightarrow$$

1. $v = (u_i)_n (b_i)_n^T$
2. $T(v) = (T(u_i))_n (b_i)_n^T$

Theorem:

- 1. $B'_V = \{u'_i\}_n$ is a basis for V 2. $B'_W = \{w'_i\}_m$ is a basis for W3. $(T(u_i))_n = (w_i)_m A$ 4. $(T(u'_i))_n = (w'_i)_m A'$ \Rightarrow 1. $\exists P \in F^{n \times n}; (u'_i)_n = (u_i)_n P$ 2. $\exists Q \in F^{m \times m}; (w'_i)_m = (w_i)_m Q$ 3. $(T(u_i))_n = (T(u_i))_n P$
- 4. $A' = O^{-1}AP$

Theorem:

- 1. $V = F^n$
- 2. $W = F^m$
- 3. $B_V = \{e_i\}_n$ the standard basis for V
- 4. $B_W = \{e_i\}_m$ the standard basis for W
- ⇒
 - 1. $(u_i)_n = (e_i)_n = I_n$
 - 2. $(w_i)_m = (e_i)_m = I_m$ 3. $(T(u_i))_n = A$

 - 4. $v = (b_i)_n^T$
 - 5. T(v) = Av
 - 6. $P = (u'_i)_n$

 - 7. $Q = (w'_i)_m$ 8. $A' = (w'_i)_m^{-1} A(u'_i)_n$

Example: $T: \mathbb{R}^2 \to \mathbb{R}^3$; $T: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ x-2y \\ 2x+3y \end{pmatrix}$

Find the matrix of T with $B_V = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ and $B_W = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} \right\}$ 1.

Find the coefficients a_{ij} such that 2.

$$T\left(\binom{1}{2}\right) = a_{11}\binom{1}{1} + a_{12}\binom{1}{0} + a_{13}\binom{0}{3} \\ T\left(\binom{1}{1}\right) = a_{21}\binom{1}{1} + a_{22}\binom{1}{0} + a_{23}\binom{0}{3}$$

Note: In the previous discussion we understood that once we fix the bases, a linear transformation has a unique Matrix of the Linear Transformation. So from here we will discuss properties of matrices. Understand that all these definitions has an equivalent definition in Linear Transformations.

 $A = (a_{ii}) \in F^{n \times n}, x \in F^n, \lambda \in F$

Definition: Eigenvalue λ and corresponding **Eigenvector** $x_{\lambda} \neq 0$ $Ax_{\lambda} = \lambda x_{\lambda}$

Theorem: λ is an eigenvalue of $A \Leftrightarrow |A - \lambda I| = 0$

Definition: Characteristic Polynomial $p(\lambda) = |\lambda I - A| = (-1)^n |A - \lambda I|$

Theorem: Cayalay-Hamilton p(A) = 0

Definition: Minimal Polynomial

The lease degree monic polynomial (coefficient of the highest power is 1) satisfying m(A) = 0

Theorem:

- 1. $m(\lambda)$ is unique
- 2. $m(\lambda)$ divides any q(A) with q(A) = 0
- 3. $m(\lambda)$ divides $p(\lambda)$
- 4. $m(\lambda)$ and $p(\lambda)$ have the same roots

Definition: Spectral Radius $\rho(A) = \max\{|\lambda_i|\}$

Definition: Trace $tr(A) = \sum_{i=1}^{n} a_{ii}$

Theorem:

- 1. tr(AB) = tr(BA)
- 2. $\sum_{i=1}^{n} \lambda_i = \operatorname{tr}(A)$
- 3. $\prod_{i=1}^n \lambda_i = |A|$

Example: Find the characteristic polynomial, minimal polynomial, eigenvalues, spectral radius and eigenvectors of the following matrices.

1	11	_10	5 \	12	1	_1) /1	_2	2\ /1	1	1\	/1	1	0	0	
(-11	-10	<i>ا</i>	\int_{a}^{3}	1	$-1 \ (1)$	-3	$3 \left(\frac{1}{2} \right)$	1	$\frac{1}{2}$	0	1	0	0)	
	5	4	-5],	2	2	-1,3	-5	3],[0	1	0],	lõ	0	2	δl	
/-	-20	-20	4 /	$\backslash 2$	2	$\begin{pmatrix} -1\\ -1\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 3\\ 6 \end{pmatrix}$	-6	4/ \0	1	1/		0	0	3/	
											\U	U	U	<i>L'</i>	

Definition: $A \in \mathbb{C}^{n \times n}$

- 1. $A^T = (a_{ji})$: Transpose
- 2. $\overline{A} = (\overline{a}_{ij})$: Conjugate
- 3. $A^{H} = (\overline{A})^{T}$: Conjugate Transpose
- 4. $A = A^{T}$: Symmetric, $A = A^{H}$: Hermitian
- 5. $A^{-1} = A^T$: Orthogonal, $A^{-1} = A^H$: Unitary

Theorem: Eigenvalues of a Hermitian/Real symmetric matrix are real.

Definition: Eigenspace corresponding to λ : $V_{\lambda} = \{\lambda | Ax_{\lambda} = \lambda x_{\lambda}\} \cup \{\underline{0}\}$

Theorem: V_{λ} is a subvector space of F^n over F

Theorem:

If the eigenvalues are different their corresponding eigenvectors are linearly independent

Definition:

 g_i = geometric multiplicity of λ_i = multiplicity of λ_i as a root of $p(\lambda)$ a_i = algebraic multiplicity of λ_i = no. of independent eigen vectors corresponding to λ_i = dim(V_i)

Theorem: With $p(\lambda) = (\lambda - \lambda_1)^{g_1} (\lambda - \lambda_2)^{g_2} (\lambda - \lambda_3)^{g_3} \dots$ and $m(\lambda) = (\lambda - \lambda_1)^{b_1} (\lambda - \lambda_2)^{b_2} (\lambda - \lambda_3)^{b_3} \dots$ we have $1 \le b_i \le g_i$ and $1 \le a_i \le g_i$

Definition: $A \in \mathbb{C}^{n \times n}$ is **diagonalizable** $\Leftrightarrow \exists$ invertible *P* such that $P^{-1}AP = \Lambda$ is a diagonal matrix

Theorem: The following are equivalent(TFAE) for $A \in \mathbb{C}^{n \times n}$

- 1. geometric multiplicity=algebraic multiplicity for each eigen value($a_i = g_i$)
- 2. minimal polynomial has *n* distinct roots($b_i = 1$)
- 3. it has n independent eigenvectors
- 4. it is diagonalizable (with Λ is the diagonal matrix formed by eigenvalues and columns of P are the corresponding eigenvectors)

Example:

1. Solve the differential equation $\frac{d^2u}{dt^2} + \frac{du}{dt} + u = 0, u(0) = 1, u'(0) = 2$ as a system of differential equations $\dot{y} = Ay, y(0) = (u(0), u'(0))^T$

2. Solve the system of differential equations $\ddot{y} = y, y(0) = (1,2,3)^T, y'(0) = (4,5,6)^T$ where $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$

Definition: Normed vector space V with norm $\|\cdot\|$ over the field $F = \mathbb{C}$

- 1. $\|\cdot\|: V \to F$ is a function
- 2. $||v|| \ge 0$ and $||v|| = 0 \Leftrightarrow v = 0$ for all $v \in V$
- 3. ||av|| = |a|||v|| for all $v \in V$ and $a \in F$
- 4. $||u + v|| \le ||u|| + ||v||$ for all $u, v \in V$

Definition/Theorem: vector norms $V = \mathbb{C}^n$ and $F = \mathbb{C}$

- 1. $||x||_p = \sqrt[p]{\sum_i |x_i|^p} : p \text{ norm}$
- 2. $||x||_1 = \sum_i |x_i|$: 1 norm
- 3. $||x||_2 = \sqrt{\sum_i |x_i|^2}$: 2 norm, norm coming from the inner product $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x^T \bar{x}}$
- 4. $||x||_{\infty} = \max\{|x_i|\}$

Definition: Matrix norm $\|\cdot\|$ of matrix *A* over $F = \mathbb{C}$

- 1. **∥**·**∥** is a norm
- 2. $||AB|| \le ||A|| ||B||$ for all matrices *A*, *B*

Definition/Theorem: Matrix norms for $A \in \mathbb{C}^{n \times n}$ over $F = \mathbb{C}$

- 1. $||A||_p = \sup_{x \neq \underline{0}} \left\{ \frac{||Ax||_p}{||x||_p} \right\}$: *p* norm induced by the vector *p* norm
- 2. $||A||_1 = \max \{\sum_j |a_{ij}|\}$: maximum absolute raw sum norm
- 3. $||A||_{\infty} = \max \{\sum_{i} |a_{ij}|\}$: maximum absolute column sum norm
- 4. $||A||_E = \sqrt{\sum_{i,j} |a_{ij}|^2}$: Frobenous norm
- 5. $||A||_2 = \sqrt{\rho(A^H A)}$: specral norm

Theorem: The following are equivalent(TFAE) for $A \in \mathbb{C}^{n \times n}$

- 1. $\lim_{k \to \infty} A^k = 0$
- 2. $\lim_{k\to\infty} A^k x = 0$ for all x
- 3. $\rho(A) < 1$
- 4. There exists a matrix norm such that ||A|| < 1

Theorems:

- 1. $||A||_2^2 \le ||A||_1 ||A||_{\infty}$
- 2. $||Ax||_p \le ||A||_p ||x||_p$: matrix and vector p norms are compatible
- 3. $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converges for $|x| < R \Rightarrow f(A) = \sum_{n=0}^{\infty} a_n A^n$ converges for $\rho(A) < R$
- 4. $A\lambda = \lambda x \Rightarrow f(A)x = f(\lambda)x$
- A is diagonalizable $\Rightarrow f(A) = P^{-1}f(\Lambda)P$ where $f(\Lambda) = \text{diag}(f(\lambda_i))$ 5.

Definition: A complete (all Cauchy Sequences converge) normed space is called a Banach Space and a complete inner product space is called a Hilber Space.

Algorithm: For solution of the system Ax = b with A = D + U + L

1. Jacobi method: $Ax = (D + U + L)x = b \Rightarrow Dx = -(U + L)x + b \Rightarrow x = -D^{-1}(U + L)x + D^{-1}b \Rightarrow x_{k+1} = Mx_k + N$ 2. Gauss-Seidel method $Ax = (D + U + L)x = b \Rightarrow (D + L)x = -Ux + b \Rightarrow x = -(D + L)^{-1}Ux + (D + L)^{-1}b \Rightarrow x_{k+1} = Mx_k + N$

Algorithm: To find the eigenvalue of A

- Power method $y_k = Ax_k, \frac{\|y_{k+1}\|}{\|y_k\|} \rightarrow |\lambda_1| > |\lambda_i|$ 1.
- **QR method** $A_k = Q_k R_k, A_{k+1} = R_k Q_k, A_k \rightarrow$ matrix with eigen values of A are on the diagonal 2.

Note:

Practically Householder Transformations and and Givens Rotations are used for finding QR decomposition. There are requirements for convergence.

Example: Use Jacobi and Gauss-Seidel methods to solve the system $\begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix} x = \begin{pmatrix} 10 \\ 14 \\ 14 \end{pmatrix}$. Comment on the convergence

by finding norms ||M|| and by finding $\rho(M)$ using Power method and QR method.

Definition: Real Quadratic Form, $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$ $f(x) = x^T A x = \sum_{i,i=1}^n A_{ii} x_i x_i$ We can always assume that A is symmetric ie. $A = A^T$

Theorem: Every real symmetric matrix is Orthogonally Diagonalizable

Theorem:

- $\lambda_{min} \|x\|^2 \le x^T A x \le \lambda_{max} \|x\|^2$
- Equality occurs when x is the corresponding eigenvector 2.

Definition:

- 1. $\forall x \neq 0, x^T A x > 0$: *A* is positive definite: A > 0
- 2. $\forall x \neq 0, x^T A x \ge 0$: *A* is positive semi definite: $A \ge 0$
- 3. $\forall x \neq 0, x^T A x < 0$: *A* is negative semi definite: A < 0
- 4. $\forall x \neq 0, x^T A x \leq 0$: *A* is negative semi definite: $A \leq 0$
- 5. Neither of the above: *A* is indefinite

Definition: Leading Principal Minors of Order k M_k = Deterninant obtained by taking the first k rows and first k columns of A

Theorem:

- 1. $A > 0 \Leftrightarrow \lambda_{min}(A) > 0$: all eigen values are positive $\Leftrightarrow M_k > 0$
- 2. $A \ge 0 \Leftrightarrow \lambda_{min}(A) \ge 0$: all eigen values are non negative $\Leftrightarrow M_k < 0$
- 3. $A < 0 \Leftrightarrow \lambda_{min}(A) < 0$: all eigen values are nagative $\Leftrightarrow M_k > 0$ for even k and $M_k < 0$ for odd k
- 4. $A \leq 0 \Leftrightarrow \lambda_{min}(A) \geq 0$: all eigen values are non positive $\Leftrightarrow M_k \geq 0$ for even k and $M_k \leq 0$ for odd k

Theorem:

- 1. $A \ge B \Leftrightarrow A B \ge 0$
- 2. $A \ge B$ and $C \ge D \Rightarrow A + C \ge B + D$
- 3. $A^2 \ge 0$
- 4. $A > 0 \Rightarrow A^{-1} > 0$
- 5. We can have $A \not\ge B$ and $A \not\le B$

Definition: Diagonal Form $f(x) = x^T Dx$, *D* is a diagonal matrix

Example:

- 1. Investigate the positivity of the function $f(x, y, z) = 2x^2 + 12xy + y^2 4xz 8yz 3z^2$
- Identify the surface f(x, y, z) = 0 by rotating the coordinate axis 2.

Example: eigenproblem for general linear transformations (extra) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by (x, y) = (x + y, x + y). Find the eigenvalues and eigenvectors of T.