Definition: $(G, *)$ is a Group \Leftrightarrow

1. $G \neq \varnothing$: set is non empty
2. $\forall a, b \in G ; a * b \in G$: binary operation is close
3. $\forall a, b, c \in G ; a *(b * c)=(a * b) * c$: operation is associative
4. $\exists e \in G, \forall a \in G ; a * e=e * a=a$: there is an identity element
5. $\forall a \in G, \exists \bar{a} \in G ; a * \bar{a}=\bar{a} * a=e$: each element has its inverse element

Example: Which of the following are groups?

1. $(\mathbb{R},+)$: set of real numbers with addition
2. (\mathbb{R}, \cdot) : set of real numbers with multiplication
3. $(\{1,0\},+)$: Boolean algebra with OR
4. $(\{1,0\}, \cdot)$: Boolean algebra with AND
5. $\left(\mathbb{R}^{2 \times 2},+\right)$: set of 2×2 matrices with real entries with addition
6. $\left(\mathbb{R}^{2 \times 2}, \cdot\right)$: set of 2×2 matrices with real entries with multiplication
7. $G L_{n}(\mathbb{R})$: set of invertible $n \times n$ matrices under multiplication
8. set of invertible functions under composition.
9. set of $4^{\text {th }}$ roots of 1 under multiplication
10. D_{3} : symmetry group of equilateral triangle under composition
11. $E=\left\{(x, y): y^{2}=x^{3}+A x+B, 4 A^{3}+27 B^{2} \neq 0\right\} \cup\{\mathcal{O}\}$: elliptic curve group, \mathcal{O} : point at infinity

Theorem: $(G, *)$ is a group \Rightarrow

1. e is unique
2. \bar{a} is unique
3. $\forall a \in G ; \overline{\bar{a}}=a$
4. $\forall a, b \in G ; \overline{a * b}=\bar{b} * \bar{a}$
5. $a * b=a * c \Longrightarrow b=c$: right cancellation
6. $b * a=c * a \Longrightarrow b=c$: left cancellation

Definition: $(G, *)$ is an Abelian Group \Leftrightarrow

1. $(G, *)$ is a group
2. $\forall a, b \in G ; a * b=b * a$: commutative

Example: which of the above examples are Abelian Groups?

Definition: $(F,+, \cdot)$ is a Field \Leftrightarrow

1. $(F,+)$ is an Abelian Group
2. $(F \backslash\{0\}, \cdot)$ is an Abelian Group: 0 is the identity for +
3. $\forall a, b \in F ; a \cdot b \in F$: closed under.
4. $\forall a, b, c \in F ; a \cdot(b+c)=(a \cdot b)+(a \cdot c)$: distributive

Note : we also use the following

1. $-a$ is the inverse of a for +
2. a^{-1} is the inverse of a for .
3. 1 is the multiplicative identity for •

Example: See which of the following are fields

1. $(\mathbb{R},+, \cdot)$
2. $(\mathbb{R}, \cdot,+)$
3. $(\mathbb{C},+, \cdot)$: set of complex numbers with addition and multiplication
4. $(\mathbb{Q},+, \cdot)$: set of rational numbers with addition and multiplication
5. $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$
6. $(\{1,0\},+, \cdot)$
7. $(\{T, F\}, \wedge, \vee)$: set of logic with AND and OR
8. $\left(G L_{n}(\mathbb{R}),+, \cdot\right)$
9. (ξ, \cup, \cap) : universal set with union and intersection
10. \mathbb{F}_{p} : finite field with prime p elements under $\bmod p$ addition and multiplication

Theorem: If p is prime and a is an integer then $a^{p} \equiv a(\bmod p)$
Theorem: $(F,+, \cdot)$ is a Field $\Rightarrow \forall a \in F ; 0 \cdot a=0$

Definition: $(V, *, \circ)$ is a vector space over $(F,+, \cdot)$

1. $(V, *)$ is an Abelian Group
2. $(F,+, \cdot)$ is a Field
3. $\forall a \in F, \forall x \in V ; a \circ x \in V$: closed under scalar multiplication
4. $\forall a, b \in F, \forall x \in V ;(a+b) \circ x=(a \circ x) *(b \circ x)$: distributive w.r.t. scalar addition
5. $\forall a \in F, \forall x, y \in V ; a \circ(x * y)=(a \circ x) *(a \circ y)$: distributive w.r.t. vector addition
6. $\forall a, b \in F, \forall x \in V ;(a \cdot b) \circ x=a \circ(b \circ x)$: associative w.r.t. scalar product
7. $\forall x \in V ; 1 \circ x=x$

Note: the above four operations are functions such that
$+: F \times F \rightarrow F$: scalar addition
$\because F \times F \rightarrow F$: scalar product
$*: V \times V \rightarrow V$: vector addtiopn
$\circ: F \times V \rightarrow V$: scalar multiplication
Example: which of the above examples are Vector Spaces?

1. ($\left.\mathbb{R}^{n},+, \cdot\right)$ over $(\mathbb{R},+, \cdot)$: set of vectors with n real entries
2. $(\mathbb{R},+, \cdot) \operatorname{over}(\mathbb{R},+, \cdot)$
3. $(\mathbb{C},+, \cdot)$ over $(\mathbb{R},+, \cdot)$
4. $(\mathbb{R},+, \cdot)$ over $(\mathbb{C},+, \cdot)$
5. $(\mathbb{C},+, \cdot)$ over $(\mathbb{C},+, \cdot)$
6. $\quad(\mathbb{R}[x],+, \cdot)$ over $(\mathbb{R},+, \cdot)$: set of polynomial in x with real coefficients
7. $(V,+, \cdot)$ over $(\mathbb{R},+, \cdot)$: set of solution of a linear differential equation
8. $(C[0,1],+, \cdot)$ over $(\mathbb{R},+, \cdot)$: continuous functions on $[0,1]$

Theorem:

$(V, *, \circ)$ over $(F,+, \cdot)$ is a vector space \Rightarrow

1. $\forall x \in V ; 0 \circ x=e$
2. $\forall a \in F ; a \circ e=e$
3. $\forall a \in V, \forall a \in F ;(-a) \circ x=\overline{(a \circ x)}$
4. $a \circ x=e \Rightarrow a=0$ or $x=e$

Definition:

$(S, *, \circ)$ is a sub vector space of $(V, *, \circ)$ over $(F,+, \cdot) \Leftrightarrow$

1. $(V, *, \circ)$ is a vector space $\operatorname{over}(F,+, \cdot)$
2. $S \subseteq V$
3. $(S, *, \circ)$ is a vector space over $(F,+, \cdot)$

Theorem:

1. $(V, *, \circ)$ is a vector space over $(F,+, \cdot)$
2. $S \subseteq V$: subset
3. $\forall x, y \in V ; x * y \in V$: closed under addition
4. $\forall a \in F, \forall x, y \in V ; a \circ x \in V$: closed under scalar multiplication
\Rightarrow
5. $(S, *, \circ)$ is a vector space over $(F,+, \cdot)$
6. ($S, *, \circ$) is a sub vector space of $(V, *, \circ)$ over $(F,+, \cdot)$

Note: When there is no threat of confusion we may use the following

1. $x * y=x+y$
2. $a \cdot b=a b$
3. $a \circ x=a x$
4. $\bar{x}=-x$
5. $e=\underline{0}$

Example: Write the rules for vector space with this new notation
V is a vector space over F (or V is a F-vector space)
$B \subseteq V, u_{i} \in B, a_{i} \in F$

Definition: $\sum_{i} a_{i} u_{i}$ is a linear combination of B

Definition: span $B=\left\{\sum_{i} a_{i} u_{i}: a_{i} \in F, u_{i} \in B\right\}$: set of all possible linear combinations of the elements of B.

Theorem:

1. span B is a subspace of V
2. span B is the smallest subspace of V containing B

Definition: B is linearly independent \Leftrightarrow
$\forall \underline{a}=\left(a_{1}, \cdots, a_{n}\right) \in F^{n} ; L(\underline{a})=\sum_{i} a_{i} u_{i}=\underline{0} \Rightarrow \underline{a}=\underline{0}$

Definition: B is linearly dependent $\Leftrightarrow B$ is not linearly independent

Theorem:

1. $|B| \geq 2$
2. B is linearly dependent
\Rightarrow At least one element of B can be written as a linear combination of the other elements

Definition: $B \subseteq V$ is a basis for $V \Leftrightarrow$

1. \quad span $B=V$
2. B is linearly independent

Example: Find a basis for the following vector spaces

1. \mathbb{R}^{n}
2. set of solution of a linear differential equation
3. $\mathcal{P}_{n}(\mathbb{R})$: set of polynomials with degree n or less
4. $\mathbb{R}[x]=P(\mathbb{R})$: set polynomials with real coefficients
5. set of Taylor series expandable functions on $[0,1]$
6. set of Fourier series expandable functions on $[0,1]$
7. $C[0,1]$: continuous functions on $[0,1]$

Definition:

1. B is a basis for V
2. $|B|$ is finite
$\Leftrightarrow V$ is finite dimensional

Note: From here on we will work with finite dimensional vector spaces

Theorem:

1. $\quad V$ is finite dimensional
2. B is a basis for V
\Rightarrow each vector in V can be uniquely expressed as a linear combination of the vectors in B

Theorem:

1. V is finite dimensional
2. B is a basis for V
\Rightarrow every set with more than $|B|$ vectors is linearly dependent

Theorem: V is finite dimensional \Rightarrow any two bases for V have the same size

Definition: Dimension

1. V is finite dimensional
2. B is a basis for V
$\Leftrightarrow \operatorname{dim} V=|B|$
Definition: $\operatorname{dim}\{\underline{0}\}=0$
Definition: standard basis for \mathbb{R}^{n}
$B=\left\{e_{i}\right\}_{n}$
$e_{i}=\left(O_{1 \times(i-1)}, 1, O_{1 \times(n-i)}\right)$
V is a vector space over F
$F=\mathbb{C}, u, v, w \subseteq V, a \in F$

Definition: inner product

1. $\langle\because\rangle:, V \times V \rightarrow F=\mathbb{C}$ is a function
2. $\langle u, v\rangle=\overline{\langle v, u\rangle}$
3. $\langle u+v, w\rangle=\langle u, v\rangle+\langle v, w\rangle$
4. $\langle a u, v\rangle=a\langle u, v\rangle$
5. $\langle u, u\rangle \geq 0$ and $\langle u, u\rangle=0 \Leftrightarrow u=\underline{0}$
$\Leftrightarrow\langle\cdot$,$\rangle is an inner product$

Note: we have $a=\bar{a}$ when $F=\mathbb{R}$

Definition: V is an inner product vector space $\Leftrightarrow V$ has an inner product defined

Theorem:

1. $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$
2. $\langle u, a v\rangle=a\langle u, v\rangle$
3. $\langle\underline{0}, u\rangle=\langle u, \underline{0}\rangle=0$

Example: Show that the following are inner products

1. $u, v \in \mathbb{R}^{n}, F=\mathbb{R} ;\langle u, v\rangle=u \cdot v$
2. $u, v \in \mathbb{C}^{n}, F=\mathbb{R} ;\langle u, v\rangle=u \cdot \bar{v}$
3. $f, g \in C([a, b]), F=\mathbb{R} ;\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$

Definition: Norm induced by the inner product $\|u\|=\sqrt{\langle u, u\rangle}$

Theorem:

1. $\|u+v\| \leq\|u\|+\|v\|$: triangular inequality
2. $|\langle u, v\rangle| \leq\|u\|\|v\|$: Cauchy-Schwarz inequality

Definition: u and v are orthogonal $\Leftrightarrow\langle u, v\rangle=0$

Definition: u and v are orthonormal \Leftrightarrow

1. $\quad u$ and v are orthogonal
2. $\|u\|=\|v\|=1$

Definition: B is orthogonal $\Leftrightarrow \forall i \neq j ; u_{i}$ and u_{j} are orthogonal
Definition: B is orthonormal $\Leftrightarrow \forall i \neq j ; u_{i}$ and u_{j} are orthonormal
Theorem: $\left\langle\sum_{i=1}^{n} a_{i} u_{i}, v\right\rangle=\sum_{i=1}^{n} a_{i}\left\langle u_{i}, v\right\rangle$

Theorem:

1. B is orthogonal
2. $\underline{0} \notin B$
$\Rightarrow B$ is linearly independent

Theorem: If $\left\{u_{i}\right\}$ is an orthonormal basis for a vector space V then any $v \in V$ can be written as $v=\sum_{i=1}^{n}\left\langle u_{i}, v\right\rangle u_{i}$

Definition: Orthogonal complement of a subspace W in an inner product space V
$W^{\perp}=\{u \in V:<u, w>=0 \forall w \in W\}$
Theorem: W^{\perp} is a subspace of V

Theorem: Let V be an inner product space and W be a subspace spanned by the orthonormal set $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$. Then we can write $u=P u+Q u \in V$ where $P u=\sum_{i=1}^{n}<u, w_{i}>w_{i} \in W$ and $Q u \in W^{\perp}$

Example: Let $V=\mathbb{R}^{3}$ and $W=\operatorname{span}\{(1,0,0),(0,1,0)\}$. Find $P u$ and $Q u$ for $u=(a, b, c) \in V$.
Theorem: $P u$ is the best approximation in W to u with respect to the norm defined by the inner product.

Example:

1. Let $V=C[-1,1]$ and the inner product for $f, g \in V$ be defined by $\int_{-1}^{1} f(x) g(x) d x$. Find the best approximation to e^{x} in $W=\operatorname{span}\left\{1, x, x^{2}\right\}$.
2. Let $V=C[-\pi, \pi]$ and the inner product for $f, g \in V$ be defined by by $\int_{-\pi}^{\pi} f(x) \overline{g(x)} d x$. Find the best approximation to f in $W=\operatorname{span}\left\{e^{i j x}\right\}_{j=1}^{n}$.

Theorem: Gram-Schmidt Process

Let $U=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ be linearly independent in an inner product space. Then if
$v_{j}=u_{j}-\sum_{i=1}^{j-1}<u_{i}, w_{i}>w_{i}$ for $j=1,2, \cdots, n$
$w_{j}=\frac{v_{j}}{\left\|v_{j}\right\|}$ for $j=1,2, \cdots, n$
Then $W=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ is orthonormal and $\operatorname{span} U=$ span W
V, W are vector spaces with the common field F
$u, v \in V, r \in F$

Definition: Linear Transformation

T is a linear transformation \Leftrightarrow

1. $T: V \rightarrow W$ is a function
2. $T(u+v)=T(u)+T(v)$
3. $\quad T(r u)=r T(u)$

Example: Show that the following are linear transformation

1. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} ; T:(x, y) \mapsto(x+y, 2 x+y, 3 x+y)$
2. $T: C(\mathbb{R}) \rightarrow \mathbb{R} ; T: u \mapsto \int_{0}^{1} u(t) d t$
3. $T: \mathbb{P}_{n}(\mathbb{R}) \mapsto \mathbb{P}_{n}(\mathbb{R}) ; T: p(x) \mapsto x p^{\prime}(x)+p(x)$

Theorem:

1. $\quad T(a u+b v)=a T(u)+b T(v)$
2. $T(\underline{0})=\underline{0}$
3. $T(-u)=-T(u)$

Definition:

1. $\operatorname{ker} T=\{u \mid T(u)=\underline{0}$ and $u \in V\}$: Kernal
2. $\operatorname{ran} T=T(V)=\{T(u) \mid u \in V\}$: Range
3. $\operatorname{dom} T=V$: Domain

Theorem:

1. $\operatorname{ker} T$ is a subspace of V
2. $\quad \operatorname{ran} T$ is a subspace of W

Definition:

1. null $T=\operatorname{dim}(\operatorname{ker} T)$: Nullity
2. $\quad \operatorname{rank} T=\operatorname{dim}(\operatorname{ran} T):$ Rank

Example: Find null T and $\operatorname{rank} T$ of
$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; T:(x, y, z) \mapsto(x-y+2 z, 2 x+y,-x-2 y+2 z)$
Theorem: Dimension theorem $\operatorname{dim}(\operatorname{dom} T)=\operatorname{rank} T+$ null T

Example: Coordinate rotation

(x, y) coordinate system is rotated anticlockwise by an angle θ to get a new coordinate system (X, Y). The associated linear transformation is
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} ; T:\binom{x}{y} \mapsto\binom{X}{Y}=\binom{x \cos \theta+y \sin \theta}{-x \sin \theta+y \cos \theta}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{x}{y}$
$B=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}=\{u\}_{i}$
(B) $=\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\left(u_{i}\right)_{n}=\left(u_{i}\right)_{1 \times n}$
$(B)^{T}=\left(\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right)=\left(u_{i}\right)_{n}^{T}=\left(u_{i}\right)_{1 \times n}^{T}$ $\left(u_{i j}\right)_{m \times n}=\left(\begin{array}{cccc}u_{11} & u_{12} & \cdots & u_{1 n} \\ u_{21} & u_{22} & \cdots & u_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{m 1} & u_{m 2} & \cdots & u_{m n}\end{array}\right)$
$T: V \rightarrow W$ is a linear transformation
F is the common field of V and W
$B_{V}=\left\{u_{i}\right\}_{n}$ is a basis for $V, B_{W}=\left\{w_{i}\right\}_{m}$ is a basis for W

Theorem:

$\exists A \in F^{m \times n} ;\left(T\left(u_{i}\right)\right)_{n}=\left(w_{i}\right)_{m} A$

Definition: Matrix of a linear transformation

$A=T_{\left(B_{V}\right),\left(B_{W}\right)} \in F^{m \times n}$
Theorem: $v=\sum_{i} b_{i} u_{i} \in V \Rightarrow$

1. $v=\left(u_{i}\right)_{n}\left(b_{i}\right)_{n}^{T}$
2. $\quad T(v)=\left(T\left(u_{i}\right)\right)_{n}\left(b_{i}\right)_{n}^{T}$

Theorem:

1. $B_{V}^{\prime}=\left\{u_{i}^{\prime}\right\}_{n}$ is a basis for V
2. $B_{W}^{\prime}=\left\{w_{i}^{\prime}\right\}_{m}$ is a basis for W
3. $\left(T\left(u_{i}\right)\right)_{n}=\left(w_{i}\right)_{m} A$
4. $\left(T\left(u_{i}^{\prime}\right)\right)_{n}=\left(w_{i}^{\prime}\right)_{m} A^{\prime}$
\Rightarrow
5. $\exists P \in F^{n \times n} ;\left(u_{i}^{\prime}\right)_{n}=\left(u_{i}\right)_{n} P$
6. $\exists Q \in F^{m \times m} ;\left(w_{i}^{\prime}\right)_{m}=\left(w_{i}\right)_{m} Q$
7. $\left(T\left(u_{i}^{\prime}\right)\right)_{n}=\left(T\left(u_{i}\right)\right)_{n} P$
8. $A^{\prime}=Q^{-1} A P$

Theorem:

1. $\quad V=F^{n}$
2. $W=F^{m}$
3. $B_{V}=\left\{e_{i}\right\}_{n}$ the standard basis for V
4. $B_{W}=\left\{e_{i}\right\}_{m}$ the standard basis for W
\Rightarrow
5. $\left(u_{i}\right)_{n}=\left(e_{i}\right)_{n}=I_{n}$
6. $\left(w_{i}\right)_{m}=\left(e_{i}\right)_{m}=I_{m}$
7. $\left(T\left(u_{i}\right)\right)_{n}=A$
8. $v=\left(b_{i}\right)_{n}^{T}$
9. $T(v)=A v$
10. $P=\left(u_{i}^{\prime}\right)_{n}$
11. $Q=\left(w_{i}^{\prime}\right)_{m}$
12. $A^{\prime}=\left(w_{i}^{\prime}\right)_{m}^{-1} A\left(u_{i}^{\prime}\right)_{n}$

Example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} ; T:\binom{x}{y} \mapsto\left(\begin{array}{c}x+y \\ x-2 y \\ 2 x+3 y\end{array}\right)$

1. Find the matrix of T with $B_{V}=\left\{\binom{1}{2},\binom{1}{1}\right\}$ and $B_{W}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 3 \\ 3\end{array}\right)\right\}$
2. Find the coefficients $a_{i j}$ such that

$$
\begin{aligned}
& T\left(\binom{1}{2}\right)=a_{11}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+a_{12}\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+a_{13}\left(\begin{array}{l}
0 \\
3 \\
3
\end{array}\right) \\
& T\left(\binom{1}{1}\right)=a_{21}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+a_{22}\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+a_{23}\left(\begin{array}{l}
0 \\
3 \\
3
\end{array}\right)
\end{aligned}
$$

Note: In the previous discussion we understood that once we fix the bases, a linear transformation has a unique Matrix of the Linear Transformation. So from here we will discuss properties of matrices. Understand that all these definitions has an equivalent definition in Linear Transformations.
$A=\left(a_{i j}\right) \in F^{n \times n}, x \in F^{n}, \lambda \in F$
Definition: Eigenvalue λ and corresponding Eigenvector $x_{\lambda} \neq 0$
$A x_{\lambda}=\lambda x_{\lambda}$
Theorem: λ is an eigenvalue of $A \Leftrightarrow|A-\lambda I|=0$
Definition: Characteristic Polynomial $p(\lambda)=|\lambda I-A|=(-1)^{n}|A-\lambda I|$
Theorem: Cayalay-Hamilton $p(A)=O$

Definition: Minimal Polynomial

The lease degree monic polynomial(coefficient of the highest power is 1) satisfying $m(A)=0$

Theorem:

1. $m(\lambda)$ is unique
2. $m(\lambda)$ divides any $q(A)$ with $q(A)=0$
3. $m(\lambda)$ divides $p(\lambda)$
4. $m(\lambda)$ and $p(\lambda)$ have the same roots

Definition: Spectral Radius $\rho(A)=\max \left\{\left|\lambda_{i}\right|\right\}$
Definition: $\operatorname{Trace} \operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$

Theorem:

1. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
2. $\sum_{i=1}^{n} \lambda_{i}=\operatorname{tr}(A)$
3. $\prod_{i=1}^{n} \lambda_{i}=|A|$

Example: Find the characteristic polynomial, minimal polynomial, eigenvalues, spectral radius and eigenvectors of the following matrices.
$\left(\begin{array}{ccc}-11 & -10 & 5 \\ 5 & 4 & -5 \\ -20 & -20 & 4\end{array}\right),\left(\begin{array}{ccc}3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0\end{array}\right),\left(\begin{array}{ccc}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right),\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right),\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$
Definition: $A \in \mathbb{C}^{n \times n}$

1. $A^{T}=\left(a_{j i}\right)$: Transpose
2. $\bar{A}=\left(\bar{a}_{i j}\right)$: Conjugate
3. $A^{H}=(\bar{A})^{T}$: Conjugate Transpose
4. $A=A^{T}$: Symmetric, $A=A^{H}$: Hermitian
5. $A^{-1}=A^{T}$: Orthogonal, $A^{-1}=A^{H}$: Unitary

Theorem: Eigenvalues of a Hermitian/Real symmetric matrix are real.

Definition: Eigenspace corresponding to λ :
$V_{\lambda}=\left\{\lambda \mid A x_{\lambda}=\lambda x_{\lambda}\right\} \cup\{\underline{0}\}$
Theorem: V_{λ} is a subvector space of F^{n} over F

Theorem:

If the eigenvalues are different their corresponding eigenvectors are linearly independent

Definition:

$g_{i}=$ geometric multiplicity of $\lambda_{i}=$ multiplicity of λ_{i} as a root of $p(\lambda)$
$a_{i}=$ algebraic multiplicity of $\lambda_{i}=$ no. of independent eigen vectors corresponding to $\lambda_{i}=\operatorname{dim}\left(V_{i}\right)$
Theorem: With $p(\lambda)=\left(\lambda-\lambda_{1}\right)^{g_{1}}\left(\lambda-\lambda_{2}\right)^{g_{2}}\left(\lambda-\lambda_{3}\right)^{g_{3}} \cdots$ and $m(\lambda)=\left(\lambda-\lambda_{1}\right)^{b_{1}}\left(\lambda-\lambda_{2}\right)^{b_{2}}\left(\lambda-\lambda_{3}\right)^{b_{3}} \cdots$
we have $1 \leq b_{i} \leq g_{i}$ and $1 \leq a_{i} \leq g_{i}$

Definition: $A \in \mathbb{C}^{n \times n}$ is diagonalizable $\Leftrightarrow \exists$ invertible P such that $P^{-1} A P=\Lambda$ is a diagonal matrix
Theorem: The following are equivalent(TFAE) for $A \in \mathbb{C}^{n \times n}$

1. geometric multiplicity=algebraic multiplicity for each eigen value $\left(a_{i}=g_{i}\right)$
2. minimal polynomial has n distinct roots $\left(b_{i}=1\right)$
3. it has n independent eigenvectors
4. it is diagonalizable(with Λ is the diagonal matrix formed by eigenvalues and columns of P are the corresponding eigenvectors)

Example:

1. Solve the differential equation $\frac{d^{2} u}{d t^{2}}+\frac{d u}{d t}+u=0, u(0)=1, u^{\prime}(0)=2$ as a system of differential equations $\dot{y}=A y, y(0)=\left(u(0), u^{\prime}(0)\right)^{T}$
2. Solve the system of differential equations $\ddot{y}=y, y(0)=(1,2,3)^{T}, y^{\prime}(0)=(4,5,6)^{T}$ where $A=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$

Definition: Normed vector space V with norm $\|\cdot\|$ over the field $F=\mathbb{C}$

1. $\|\cdot\|: V \rightarrow F$ is a function
2. $\|v\| \geq 0$ and $\|v\|=0 \Leftrightarrow v=\underline{0}$ for all $v \in V$
3. $\|a v\|=|a|\|v\|$ for all $v \in V$ and $a \in F$
4. $\|u+v\| \leq\|u\|+\|v\|$ for all $u, v \in V$

Definition/Theorem: vector norms $V=\mathbb{C}^{n}$ and $F=\mathbb{C}$

1. $\|x\|_{p}=\sqrt[p]{\sum_{i}\left|x_{i}\right|^{p}}: p$ norm
2. $\|x\|_{1}=\sum_{i}\left|x_{i}\right|: 1$ norm
3. $\|x\|_{2}=\sqrt{\sum_{i}\left|x_{i}\right|^{2}}: 2$ norm, norm coming from the inner product $\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{x^{T} \bar{x}}$
4. $\|x\|_{\infty}=\max \left\{\left|x_{i}\right|\right\}$

Definition: Matrix norm $\|\cdot\|$ of matrix A over $F=\mathbb{C}$

1. $\|\cdot\|$ is a norm
2. $\|A B\| \leq\|A\|\|B\|$ for all matrices A, B

Definition/Theorem: Matrix norms for $A \in \mathbb{C}^{n \times n}$ over $F=\mathbb{C}$

1. $\|A\|_{p}=\sup _{x \neq \underline{0}}\left\{\frac{\|A x\|_{p}}{\|x\|_{p}}\right\}: p$ norm induced by the vector p norm
2. $\|A\|_{1}=\max \left\{\sum_{j}\left|a_{i j}\right|\right\}:$ maximum absolute raw sum norm
3. $\|A\|_{\infty}=\max \left\{\sum_{i}\left|a_{i j}\right|\right\}:$ maximum absolute column sum norm
4. $\|A\|_{E}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}$: Frobenous norm
5. $\|A\|_{2}=\sqrt{\rho\left(A^{H} A\right)}$: specral norm

Theorem: The following are equivalent(TFAE) for $A \in \mathbb{C}^{n \times n}$

1. $\lim _{k \rightarrow \infty} A^{k}=0$
2. $\lim _{k \rightarrow \infty} A^{k} x=\underline{0}$ for all x
3. $\rho(A)<1$
4. There exists a matrix norm such that $\|A\|<1$

Theorems:

1. $\|A\|_{2}^{2} \leq\|A\|_{1}\|A\|_{\infty}$
2. $\|A x\|_{p} \leq\|A\|_{p}\|x\|_{p}$: matrix and vector p norms are compatible
3. $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $|x|<R \Rightarrow f(A)=\sum_{n=0}^{\infty} a_{n} A^{n}$ converges for $\rho(A)<R$
4. $\quad A \lambda=\lambda x \Rightarrow f(A) x=f(\lambda) x$
5. A is diagonalizable $\Rightarrow f(A)=P^{-1} f(\Lambda) P$ where $f(\Lambda)=\operatorname{diag}\left(f\left(\lambda_{\mathrm{i}}\right)\right)$

Definition: A complete(all Cauchy Sequences converge) normed space is called a Banach Space and a complete inner product space is called a Hilber Space.

Algorithm: For solution of the system $A x=b$ with $A=D+U+L$

1. Jacobi method:

$$
A x=(D+U+L) x=b \Rightarrow D x=-(U+L) x+b \Rightarrow x=-D^{-1}(U+L) x+D^{-1} b \Rightarrow x_{k+1}=M x_{k}+N
$$

2. Gauss-Seidel method

$$
A x=(D+U+L) x=b \Rightarrow(D+L) x=-U x+b \Rightarrow x=-(D+L)^{-1} U x+(D+L)^{-1} b \Rightarrow x_{k+1}=M x_{k}+N
$$

Algorithm: To find the eigenvalue of A

1. Power method $y_{k}=A x_{k}, \frac{\left\|y_{k+1}\right\|}{\left\|y_{k}\right\|} \rightarrow\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$
2. QR method $A_{k}=Q_{k} R_{k}, A_{k+1}=R_{k} Q_{k}, A_{k} \rightarrow$ matrix with eigen values of A are on the diagonal

Note:

Practically Householder Transformations and and Givens Rotations are used for finding QR decomposition.
There are requirements for convergence.
Example: Use Jacobi and Gauss-Seidel methods to solve the system $\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3\end{array}\right) x=\left(\begin{array}{l}10 \\ 14 \\ 14\end{array}\right)$. Comment on the convergence by finding norms $\|M\|$ and by finding $\rho(M)$ using Power method and QR method.

Definition: Real Quadratic Form, $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n}$
$f(x)=x^{T} A x=\sum_{i, j=1}^{n} A_{i j} x_{i} x_{j}$
We can always assume that A is symmetric ie. $A=A^{T}$
Theorem: Every real symmetric matrix is Orthogonally Diagonalizable

Theorem:

1. $\lambda_{\text {min }}\|x\|^{2} \leq x^{T} A x \leq \lambda_{\text {max }}\|x\|^{2}$
2. Equality occurs when x is the corresponding eigenvector

Definition:

1. $\forall x \neq \underline{0}, x^{T} A x>0: A$ is positive definite: $A>0$
2. $\forall x \neq \underline{0}, x^{T} A x \geq 0: A$ is positive semi definite: $A \succcurlyeq 0$
3. $\forall x \neq \underline{0}, x^{T} A x<0$: A is negative semi definite: $A<0$
4. $\forall x \neq \underline{0}, x^{T} A x \leq 0: A$ is negative semi definite: $A \preccurlyeq 0$
5. Neither of the above: A is indefinite

Definition: Leading Principal Minors of Order k

$M_{k}=$ Deterninant obtained by taking the first k rows and first k columns of A

Theorem:

1. $A>0 \Leftrightarrow \lambda_{\text {min }}(A)>0$: all eigen values are positive $\Leftrightarrow M_{k}>0$
2. $A \succcurlyeq 0 \Leftrightarrow \lambda_{\text {min }}(A) \geq 0$: all eigen values are non negative $\Leftrightarrow M_{k}<0$
3. $A<0 \Leftrightarrow \lambda_{\text {min }}(A)<0$: all eigen values are nagative $\Leftrightarrow M_{k}>0$ for even k and $M_{k}<0$ for odd k
4. $A \preccurlyeq 0 \Leftrightarrow \lambda_{\text {min }}(A) \geq 0$: all eigen values are non positive $\Leftrightarrow M_{k} \geq 0$ for even k and $M_{k} \leq 0$ for odd k

Theorem:

1. $A \succcurlyeq B \Leftrightarrow A-B \succcurlyeq 0$
2. $A \succcurlyeq B$ and $C \succcurlyeq D \Rightarrow A+C \succcurlyeq B+D$
3. $A^{2} \succcurlyeq 0$
4. $A \succ 0 \Rightarrow A^{-1} \succ 0$
5. We can have $A \notin B$ and $A \nless B$

Definition: Diagonal Form $f(x)=x^{T} D x, D$ is a diagonal matrix

Example:

1. Investigate the positivity of the function $f(x, y, z)=2 x^{2}+12 x y+y^{2}-4 x z-8 y z-3 z^{2}$
2. Identify the surface $f(x, y, z)=0$ by rotating the coordinate axis

Example: eigenproblem for general linear transformations (extra)
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $(x, y)=(x+y, x+y)$. Find the eigenvalues and eigenvectors of T.

