FIELD	
NAME	
INDEX NUMBER	
L=Last 3 Digits of the Index Number	
M=Number obtained by taking Mod 2 (remainder after dividing by 2) of each digit of L Write this number M on the diagonal of the matrix A, starting from the top left hand corner $A=\left(\begin{array}{ccc}\square & 1 & 2 \\ 1 & \square & 1 \\ 1 & 2 & \square\end{array}\right)$.	

Q1. Find a basis for the vector space spanned by the columns of the matrix A.
Solution: Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 1\end{array}\right)$.
$V=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)\right\}$ is the required vector space(it is called the column space of A).
We do column operations:
$\left.A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 1\end{array}\right) \begin{array}{c}C_{1}+C_{2}+C_{3} \rightarrow C_{3} \\ \Rightarrow \\ -C_{1}+C_{2} \rightarrow C_{2}\end{array}\left(\begin{array}{lll}1 & 0 & 4 \\ 1 & 1 & 4 \\ 1 & 1 & 4\end{array}\right) \underset{\substack{-4 C_{1}+C_{3} \\-C_{2}+C_{1} \\ \Rightarrow \\ \rightarrow C_{3}}}{\substack{1 \\ 0}} \begin{array}{lll}0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$
So $B=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$ is a basis for V

Note:

1. You can back-track the columns operations to justify our claims:
$C_{3}^{\prime}=C_{1}+C_{2}+C_{3}$
$C_{3}^{\prime \prime}=-4 C_{1}+C_{3}^{\prime}=-4 C_{1}+C_{1}+C_{2}+C_{3}=-3 C_{1}+C_{2}+C_{3}=\underline{0}$
or $-3\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+1\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)+1\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ showing that the columns are linearly dependent.
or $C_{3}=3 C_{1}-C_{2}$
Also
$C_{2}^{\prime}=-C_{1}+C_{2}$
$C_{1}^{\prime}=-C_{2}^{\prime}+C_{1}=-\left(-C_{1}+C_{2}\right)+C_{1}=2 C_{1}-C_{2}$
Showing that span $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)\right\}=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)\right\}=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$ (why?)
2. Clearly $B=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$ is linearly independent since $a\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+b\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}a \\ b \\ b\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Rightarrow a=b=0$.

Alternatively, the inner product $\left\langle\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=0$ also tells us that B is linearly independent.
3. $B=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$ is orthogonal. We can make it orthonormal by dividing each vector by its norm: $B^{\prime}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$.

This is as answer to Q2, without using Gram-Schmidt(what will happen if we use Gram-Schmidt on the columns of A ?)
4. Any two or all the 3 vectors of $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ not a basis for V (why?).
5. Finding $\operatorname{det} A=1(2-2)-1(1-1)+2(2-2)=0$ will tell you that the columns are dependent.

But it will not tell which columns will be in the basis nor how many of them are there.
6. Doing row operations
$A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 1\end{array}\right) \underset{\substack{-R_{1}+R_{2} \\-R_{1}+R_{2} \\ \Rightarrow \\ R_{2}}}{\rightarrow}\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & -1\end{array}\right) \underset{-2 R_{2}+R_{1} \rightarrow R_{1}}{\Rightarrow} \begin{gathered}-R_{2}+R_{3}\end{gathered} \rightarrow R_{3}\left(\begin{array}{ccc}1 & 3 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right)$
will tell you that rowrank $A=$ columnrank $A=2=\operatorname{rank} A$, or that a basis will have 2 elements. But it will not tell you which columns will be in the basis. In general you can't say that any two columns will be in the basis, take
$\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1\end{array}\right)$ for example. Row operations will not find a basis for the columns space in general.

Q2. Use Gram-Schmidt process to find an orthonormal basis for the vector space in Q1(keep the square roots, they will remain only in the answer)

Solution: Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 2 & 1\end{array}\right)$.
$\operatorname{det} A=1(1-2)-1(1-1)+2(2-1)=1 \neq 0$ so the columns are linearly independent.
So $B=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)\right\}$ is a basis for $V=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)\right\}$
Using-Gram Schmidt
Let $v_{1}=u_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, so $\left\|v_{1}\right\|=\sqrt{3}$, so $w_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is the first element in the Orhonormal set
Also $v_{2}=u_{2}-\left\langle u_{2}, w_{1}\right\rangle w_{1}$ and $\left\langle u_{2}, w_{1}\right\rangle=\left\langle\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\frac{4}{\sqrt{3}}$
So $v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)-\frac{4}{\sqrt{3}} \frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)-\frac{4}{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\frac{1}{3}\left(\begin{array}{l}3-4 \\ 3-4 \\ 6-4\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)$ and $\left\|v_{2}\right\|=\frac{\sqrt{6}}{3}$
Then $w_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{3}{\sqrt{6}} \frac{1}{3}\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)=\frac{1}{\sqrt{6}}\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)$ is the second element in the orhonormal set
Also $v_{3}=u_{3}-\left\langle u_{3}, w_{1}\right\rangle w_{1}-\left\langle u_{3}, w_{2}\right\rangle w_{2}$ and $\left\langle u_{3}, w_{1}\right\rangle=\left\langle\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\frac{4}{\sqrt{3}}$
and $\left\langle u_{3}, w_{2}\right\rangle=\left\langle\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)\right\rangle=\frac{1}{\sqrt{6}}\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)=\frac{-1}{\sqrt{6}}$
So $v_{3}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)-\frac{4}{\sqrt{3}} \frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)-\frac{-1}{\sqrt{6}} \frac{1}{\sqrt{6}}\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)-\frac{4}{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+\frac{1}{6}\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}12-8-1 \\ 6-8-1 \\ 6-8+2\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}3 \\ -3 \\ 0\end{array}\right)=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$
and $\left\|v_{3}\right\|=\sqrt{2}$. Then $w_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ is the third element in the orhonormal set
So the required orthonormal basis is $W=\left\{w_{1}, w_{2}, w_{3}\right\}=\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)\right\}$

Note: QR factorization

Rewriting u_{1}, u_{2}, u_{3} as a linear combination of w_{1}, w_{2}, w_{3} using the Gram-Schmidt formula, we have
$v_{1}=u_{1}=\left\|v_{1}\right\| w_{1}$ or $u_{1}=\left\|v_{1}\right\| w_{1}+0 w_{2}+0 w_{3}$
$v_{2}=u_{2}-\left\langle u_{2}, w_{1}\right\rangle w_{1}=\left\|v_{2}\right\| w_{2}$ or $u_{2}=\left\langle u_{2}, w_{1}\right\rangle w_{1}+\left\|v_{2}\right\| w_{2}+0 w_{3}$
$v_{3}=u_{3}-\left\langle u_{3}, w_{1}\right\rangle w_{1}-\left\langle u_{3}, w_{2}\right\rangle w_{2}=\left\|v_{3}\right\| w_{3}$ or $u_{3}=\left\langle u_{3}, w_{1}\right\rangle w_{1}+\left\langle u_{3}, w_{2}\right\rangle w_{2}+\left\|v_{3}\right\| w_{3}$.

So we can write
$A=\left(\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right)=\left(\begin{array}{lll}w_{1} & w_{2} & w_{3}\end{array}\right)\left(\begin{array}{ccc}\left\|v_{1}\right\| & \left\langle u_{2}, w_{1}\right\rangle & \left\langle u_{3}, w_{1}\right\rangle \\ 0 & \left\|v_{2}\right\| & \left\langle u_{3}, w_{2}\right\rangle \\ 0 & 0 & \left\|v_{3}\right\|\end{array}\right)$
or $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 2 & 1\end{array}\right)=\left(\begin{array}{ccc}1 / \sqrt{3} & -1 / \sqrt{6} & 1 / \sqrt{2} \\ 1 / \sqrt{3} & -1 / \sqrt{6} & -1 / \sqrt{2} \\ 1 / \sqrt{3} & 2 / \sqrt{6} & 0\end{array}\right)\left(\begin{array}{ccc}\sqrt{3} & 4 / \sqrt{3} & 4 / \sqrt{3} \\ 0 & \sqrt{6} / 3 & -1 / \sqrt{6} \\ 0 & 0 & \sqrt{2}\end{array}\right)=Q R$ is the
$Q R$ factorization of A.
Here $Q=\left(\begin{array}{lll}w_{1} & w_{2} & w_{3}\end{array}\right)=\left(\begin{array}{ccc}1 / \sqrt{3} & -1 / \sqrt{6} & 1 / \sqrt{2} \\ 1 / \sqrt{3} & -1 / \sqrt{6} & -1 / \sqrt{2} \\ 1 / \sqrt{3} & 2 / \sqrt{6} & 0\end{array}\right)$ is a unitary/orthogonal matrix(why?)
$R=\left(\begin{array}{ccc}\sqrt{3} & 4 / \sqrt{3} & 4 / \sqrt{3} \\ 0 & \sqrt{6} / 3 & -1 / \sqrt{6} \\ 0 & 0 & \sqrt{2}\end{array}\right)=$ is an upper triangular matrix. The factorization is unique up to \pm.

