TH1. Let an orientable surface be given parametrically by $\boldsymbol{r}=\boldsymbol{r}(u, v)$.
Let $\boldsymbol{n}=\boldsymbol{n}(u, v)$ be the unit outward normal vector from the convex side of the surface and the Shape matrix S be given by $\binom{-\boldsymbol{n}_{u}}{-\boldsymbol{n}_{v}}=S\binom{\boldsymbol{r}_{u}}{\boldsymbol{r}_{v}}$.
Now the Gaussian Curvature of the surface is defined by $K=\operatorname{det} S$.
Show that the Gaussian Curvature of the surface $z=f(x, y) \in \mathcal{C}^{2}$ is given by

$$
K=\frac{f_{x x} f_{y y}-\left(f_{x y}\right)^{2}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{2}}
$$

. Use this formula to find K for a sphere with radius R.

TH2. Let S be an orientable surface and C be its boundary which is a loop. Prove the Chandrasekhar-Wentzel lemma

$$
\oint_{C} \boldsymbol{r} \times(d \boldsymbol{r} \times \boldsymbol{n})=-\iint_{S}(\boldsymbol{r} \times \boldsymbol{n}) \nabla \cdot \boldsymbol{n} d S
$$

using any method different to the one found on Wikipedia.
Also verify the above result on the upper half sphere with center at the origin and radius R.

