Q1. Show that if $\boldsymbol{T}(t)$ is a unit vector then $\frac{d \boldsymbol{T}}{d t}$ is perpendicular to \boldsymbol{T}.

Q2. Find the curvature of a circle with radius R.

Q3. Find a scalar potential for the vector field $\boldsymbol{F}=\left\langle 3 x^{2} y^{2}+2 x, 2 x^{3} y+1\right\rangle$. Also show in general that if $\boldsymbol{F}=\nabla \phi \in \mathcal{C}^{1}$ then $\int_{C} \boldsymbol{F} . d \boldsymbol{r}$ is path independent.

Q4. Evaluate the integral $\int_{0}^{3} \int_{x^{2}}^{9} x y^{2} d y d x$ as it is and after changing the order of integration.

Q5. Find the integral $\int_{0}^{\infty} e^{-x^{2}} d x$ by considering a double integral.
Q6. Let $S_{1}: z=2 x+3, S_{2}: z=x^{2}+y^{2}$ be two surfaces and let C be the curve on which they intersect. Verify the Stoke's Theorem on each surface for the vector field $\boldsymbol{F}=<x y, y z, z x>$.

Q7. Verify the Divergence theorem in 2D for $\boldsymbol{F}=<x^{2} y^{2}+2 x, 2 x^{3} y+1>$ on the region bounded by the curves $y=x$ and $y=x^{2}$.

Q8. Us the Divergence Theorem to prove the Archimedes Principle: upthrust=weight of the liquid displaced.

Q9. Use Maxwell's Equations and vector identities to show that the Electric Field in vacuum \boldsymbol{E} satisfies the wawe equation: $\frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}=c^{2} \nabla^{2} \boldsymbol{E}$ where $c=$ speed of light in vacuum.

Q10. Express $z \bar{w}$ in terms of $\underline{z}, \underline{w}$ and find conditions for $z=x+i y$ and $w=a+i b$ to be perpendicular and parallel. Here $\underline{z}=<x, y>$ and $\underline{w}=<a, b>$.

Q11. Find the differentiable points of $z^{2},|z|^{2}, \bar{z}$ and determine their analytic points.

Q12. Find $\oint_{C} \frac{z^{2}-2}{(z-2)^{2}(z-3)(z-4)} d z$ where points 2,3 are inside and 4 is outside of the curve c.

Q13. Find the Laurent series of the function $f(z)=\frac{1}{(z-1)(z-2)^{2}}$ at 2 .
Q14. Find the following real integrals
$\int_{0}^{\infty} \frac{1}{1+x^{4}} d x$
$\int_{0}^{\infty} \frac{\sin x}{x\left(1+x^{2}\right)} d x$
$\int_{0}^{\infty} \frac{\sqrt{x}}{(x+1)^{2}} d x$

