Theorem 1. Complex Inversion Formula for Laplace Transform
Let $|f(t)| \leq M e^{a t}$ so the Laplace Transform $F(s)$ be valid for $\operatorname{Re} s>a$ and let $\lim _{|s| \rightarrow \infty}|F(s)|=0$. Then the inverse Laplace transform $f(t)$ is given by $f(t)=\frac{1}{2 \pi i} \int_{b-i \infty}^{b+i \infty} F(s) e^{s t} d s=$ Sum of Residues of $F(s) e^{s t}$ for Re $s \leq a$.

Proof.
Let $|f(t)| \leq M e^{a t}$. Then the Laplace transform is
$\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} f(t) e^{s t} d t$
So $|F(s)| \leq \int_{0}^{\infty} M e^{a t} e^{\operatorname{Re} s t} d t=\frac{1}{\operatorname{Re} s-a}$ whenever $\operatorname{Re} s>a$.
Take any real number $b>a$ and define $g(t)=f(t) e^{-b t}$ for $t \geq 0$ and 0 otherwise.
Fourier Transform of $g(t)$ is
$\mathcal{F}\{g(t)\}=G(\omega)=\int_{-\infty}^{\infty} g(t) e^{-i \omega t} d t=\int_{0}^{\infty} f(t) e^{-(b+i \omega) t} d t=F(b+i \omega)$
And the inverse Fourier Transform of $G(\omega)$ is
$g(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\omega) e^{i \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(b+i \omega) e^{i \omega t} d \omega$
In particular for $t \geq 0$,
$g(t)=f(t) e^{-b t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(b+i \omega) e^{i \omega t} d \omega$ or
$f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(b+i \omega) e^{(b+i \omega) t} d \omega$
Now changing the variable $s=b+i \omega$, we arrive at
$f(t)=\frac{1}{2 \pi i} \int_{b-i \infty}^{b+i \infty} F(s) e^{s t} d s$
Now let L : vertical line from $b-i R$ to $b+i R$ and Γ : left half circle with center $b+i 0$ and radius R. Let the closed loop $C=L \cup \Gamma$.

On Γ with $s=b+R e^{i \theta}$ for $\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$ we have
$\left|\int_{\Gamma} F(s) e^{s t} d s\right| \leq \int_{\pi / 2}^{3 \pi / 2}\left|F\left(b+R e^{i \theta}\right)\right| e^{(b+R \cos \theta) t} R d \theta \leq \epsilon R e^{b t} \int_{\pi / 2}^{3 \pi / 2} e^{R t \cos \theta} d \theta$
Note that $\cos \theta \leq-\frac{2}{\pi} \theta+1$ on $\frac{\pi}{2} \leq \theta \leq \pi$ and $\cos \theta \leq \frac{2}{\pi} \theta-3$ on $\pi \leq \theta \leq \frac{3 \pi}{2}$
Therefore, $\int_{\pi / 2}^{3 \pi / 2} e^{R t \cos \theta} d \theta \leq \int_{\pi / 2}^{\pi} e^{R t\left(-\frac{2}{\pi} \theta+1\right)} d \theta+\int_{\pi}^{\frac{3 \pi}{2}} e^{R t\left(\frac{2}{\pi} \theta-3\right)} d \theta$ $=e^{R t} \frac{\pi}{2 R t}\left(e^{-R t}-e^{-2 R t}\right)+e^{-3 R t} \frac{\pi}{2 R t}\left(e^{3 R t}-e^{2 R t}\right)=\frac{\pi}{R t}\left(1-e^{-R t}\right)$

Now, $\left|\int_{\Gamma} F(s) e^{s t} d s\right| \leq \epsilon \operatorname{Re}^{b t} \frac{\pi}{R t}\left(1-e^{-R t}\right)=\epsilon e^{b t \frac{\pi}{t}}\left(1-e^{-R t}\right) \rightarrow 0$ as $R \rightarrow \infty$
Also $\int_{L} F(s) e^{s t} d s \rightarrow \int_{b-i \infty}^{b+i \infty} F(s) e^{s t} d s=2 \pi i f(t)$ as $R \rightarrow \infty$.
And $\int_{C} F(s) e^{s t} d s \rightarrow 2 \pi i$ Sum of Residues of $F(s) e^{s t}$ to the left of Res $<b$.
So we have,
$0+2 \pi i f(t)=2 \pi i$ Sum of Residues of $F(s) e^{s t}$ for Re $s<b$.
Finally since $F(s)$ has no singularities for $a<\operatorname{Re} s \leq b$ we have $f(t)=$ Sum of Residues of $F(s) e^{s t}$ for $\operatorname{Re} s \leq a$

