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1 Vector Calculus

Definition 1. Curve
A function r : [a, b] ⊂ R→ R3 given by r(t) =< x(t), y(t), z(t) > is a curve.
The direction of the curve is said to be from a to b.

Definition 2. Length of a curve
Let r be a curve in R3. Let P = {t0, t1, . . . , tn} with t0 = a, tn = b with tk > tk−1

be a partition of [a, b] i.e. P ∈ P [a, b]. Define s (r, P ) =
∑n

k=1‖r(tk)− r(tk−1)‖ and
the length of the curve by s (r) = sup{s (r, P ) |P ∈ P [a, b]}

Definition 3. r is Rectifiable iff s (r) ∈ R

Theorem 1. If r ∈ C1 then s (r) =
∫ b
a ‖r

′(t)‖dt and ds
dt = ‖r′(t)‖.

Note 1. MVT does not exist for a curve r = r(t). However in R2 there exists
c ∈ (a, b) such that r′(t) is parallel to r(b) − r(a). Let r′(t) 6= 0 for all curves we
discuss below.

Definition 4. Unit Tangent Vector T = dr
ds , Unit Normal Vector N = 1

κ
dT
ds

Unit Binormal Vector B = T×N, Curvature κ = ‖dTds ‖, Torsion −τN = dB
ds

Theorem 2. Frenet-Serret Formulas dT
ds
dN
ds
dB
ds

 =

 0 κ 0
−κ 0 τ

0 −τ 0

T
N
B


Definition 5. Velocity v = dr

dt = ṙ, Acceleration a = dv
dt = v̇

Theorem 3. κ = ‖v×a‖
‖v‖3 , τ = v×a·ȧ

‖v×a‖2

Example 1.
1. Let r(t) = 〈a cos t, a sin t, ct〉. Find T,N,B, κ, τ
2. Show that the curvarute of a circle with radius R is 1

R.
3. Find velocity and acceleration on a parametric curve and deduce the same for
circular motion.

Definition 6. Path C is a function r : [a, b] ⊂ R → Rn which is smooth(i.e. C∞)
and one to one on (a, b). Also the Direction of the path is from a to b

Definition 7. Loop is a Path such that r(a) = r(b). Usually the Direction of a Loop
is taken anticlockwise.

Definition 8. Vector Field F : D ⊂ Rn → Rn is a C1 function.

Definition 9. Line Integral of the Vector Field F over the Path C given by r(t) is

defined as
∫ b
a F(r(t)) ·r′(t)dt. We simply write

∫
C F ·dr and

∮
C F ·dr when the Path

is a Loop.

Definition 10. Vector Field F is Path Independent iff its Line Integral
∫
C F · dr is

independent of the path C between any two given points of its domain.
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Theorem 4. F is Path Independent ⇔
∮
C F · dr = 0 for every Loop C.

Definition 11. Gradient(Dell) Operator where
grad = ∇ = i ∂∂x + j ∂∂y + k ∂

∂z

For a function φ = φ(x, y, z) we define,

gradφ = ∇φ =
(
i ∂∂x + j ∂

∂y + k ∂
∂z

)
φ = i∂φ∂x + j ∂φ∂y + k∂φ

∂z

Definition 12. Vector Field F is Conservative iff there exists a C2 function φ :
D ⊂ Rn → R such that F = ∇φ

Theorem 5. Path Independent ⇔ Conservative.
The ⇐ direction

∫ b
a ∇φ(r(t)) · r′(t)dt = φ(r(b))− φ(r(a)) is called the First Funda-

mental Theorem of Line Integrals.
The ⇒ direction ∇

∫ s
a F(r(t)) · r′(t)dt = F(r(s)) is called the Second Fundamental

Theorem of Line Integrals.

Example 2.
1.Consider the vector field F =< 3x2y2, 2x3y >. Find the work done along the two
paths given by y = x and y = x2 from (0, 0) to (1, 1). Find a scalar potential φ given
by F = ∇φ and explain the reason for the same work done along the two paths.
2. Consider the Newton’s gravitational force given by F = GMm

r3 r. Directly integrate
the gravitational field E = −GM

r3 r to find a scalar gravitational potential V .

Definition 13. Divergence and Curl of a Vector Field F = iF1 + jF2 + kF3

divF = ∇× F =
(
i ∂∂x + j ∂

∂y + k ∂
∂z

)
· (iF1 + jF2 + kF3) = ∂F1

∂x + ∂F2

∂y + ∂F3

∂z

And

curlF = ∇× F =
(
i ∂∂x + j ∂

∂y + k ∂
∂z

)
× (iF1 + jF2 + kF3) =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣
Definition 14. Vector Field F is Irrotational iff curlF = 0.

Example 3. Show that curl(gradφ) = ∇×∇φ = 0 for a scalar field φ ∈ C2.

Theorem 6. Conservative ⇒ Irrotational.

Definition 15. A Path Connected domain is a domain D where there is a path
between every two points of the domain.

Definition 16. D is Simply Connected iff it is Path Connected and
Paths with the same end points can be continuously deformed to each other.
i.e. every Loop can be continuously deformed to a point.
i.e. the interior of every Loop is also belongs to the set.

Example 4. Consider the vector field F =
〈
−y

x2+y2 ,
x

x2+y2

〉
.

1. Attempt to find a scalar potential.
2. Find the work done from (1, 0) to (−1, 0) along several paths.
3. Find curlF .
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Definition 17. Reimann Integral on a rectangle
Let the rectangle A = [0, a]× [0, b] be partitioned into n rectangles
P = {A1, A2, · · · , An} ∈ P(A). The k th rectangle is having area ∆Ak = ∆xk∆yk.
Let the function f(x, y) be defined on A. Let
mk = inf{f(x, y)|(x, y) ∈ Ak},Mk = sup{f(x, y)|(x, y) ∈ Ak} and
L(P, f) =

∑n
k=1mk∆Ak, U(P, f) =

∑n
k=1Mk∆Ak. Define

L(f) = sup{L(P, f)|P ∈ P(A)}, U(f) = inf{U(P, f)|P ∈ P(A)}
Iff L(f) = U(f) we say that f is Riemann Integrable on A or f ∈ R(A) and the
common value denoted by

∫
A f(x, y)dA as the Riemann Integral.

Note that we get the area of A = ab when f(x, y) = 1.

Theorem 7. Fubini’s
Let f ∈ C then

∫∫
[0,a]×[0,b] f(x, y)dA =

∫ a
0

(∫ b
0 f(x, y)dy

)
dx =

∫ b
0

(∫ a
0 f(x, y)dx

)
dy.

Note that we write dA = dxdy motivated by the above theorem.

Definition 18. Reimann Integral of on an arbitrary region.
Let f be defined A ⊂ [0, a]× [0, b]
Define g(x, y) = f(x, y) if (x, y) ∈ A and 0 otherwise.
Now we define:

∫
A f(x, y)dA =

∫
[0,a]×[0,b] g(x, y)dA.

Note that we can define the are of A a when f(x, y) = 1.

Theorem 8. Extended Fubini’s theorem
Let f be C and R in a region A bounded by two C curves h(x) and g(x) for x ∈ [0, a],

then
∫∫

A f(x, y)dA =
∫ a

0

(∫ h(x)

g(x) f(x, y)dy
)
dx

Let f be C and R in a region A bounded by two C curves p(y) and q(y) for

y ∈ [0, b], then
∫∫

A f(x, y)dA =
∫ b

0

(∫ q(y)

p(y) f(x, y)dx
)
dy

Example 5.
1. Evaluate the integral

∫ 3

0

∫ 9

x2 xy
2dydx as it is and after changing the order of

integration.
2. Find the integral

∫∞
0 e−x

2

dx by considering a double integral.

Theorem 9. Change of variable

Let x = x(u, v), y = y(u, v) and the Jacobian J =
∣∣∣∂(x,y)
∂(u,v)

∣∣∣ 6= 0 so that we can

locally invert (x, y) to get (u, v). Let u, v,k makes a right handed system. Then
J = ||ru × rv|| and dA = Jdudv

Example 6. Change variables by u = y + x and v = y − x to evaluate the integral∫ ∫
A xydxdy where A is the region bounded by y = x, y = x+ 1, y = −x, y = −x+ 1.

Theorem 10. Green’s
Let C be a Loop and also the boundary of a Simply Connected region A ⊂ R2 and
let F = 〈F1, F2〉 be a Vector Field. Then∮

C

F · dr =

∫∫
A

(
∂F2

∂x
− ∂F1

∂y

)
dA

.
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We can make the area dA a vector quantity by multiplying it with the unit vector
in the direction of an advancement of a right hand screw when the rotation is the
anticlockwise direction of the curve C. So dA = kdA. Now the above theorem can
be written as ∮

C

F · dr =

∫∫
A

curlF · dA

Theorem 11. Divergence theorem on the plane
Let n be the unit normal vector out from the loop C where s is the arc length and
C is the boundary of a simply Connected region A ⊂ R2. F = 〈F1, F2〉 be a Vector
Field. Then ∮

C

F · nds =

∫∫
A

(
∂F2

∂x
+
∂F1

∂y

)
dA =

∫∫
A

divF dA

Example 7. Let F =< 3x2y2 + 2x, 2x3y + 1 > and A be the region bounded by the
curves y = x and y = x2. verify
1. Green’s theorem
2. Divergence theorem on the plane.

Definition 19. Surface
A function r : R2 → R3 given by r(u, v) =< x(u, v), y(u, v), z(u, v) > is a surface.
If a normal vector n exists, then surface is said to be Orientable. In such a case
n = ru×rv

||ru×rv||.There are non-orientable surfaces, examples are Mobius Strip and Klein
Bottle.
If u, v,n makes a right handed system, we have dS = ndS = (ru × rv)dudv

Theorem 12. Stoke’s
Let C be a Loop and also the boundary of a Simply Connected surface S ⊂ R3 and
let F be a Vector Field. Then∮

C

F · dr =

∫∫
S

curlF · dS

Here we select n such that it makes a right handed screw with the direction of the
Loop C.

Theorem 13. Let F be defined on a Simply Connected domain, then
F is Irrotational ⇒ F is Conservative.

Example 8. Let S1 : z = 2x + 3, S2 : z = x2 + y2 be two surfaces and let C be the
curve on which they intersect. Verify the Stoke’s Theorem on each surface for the
vector field F =< xy, yz, zx >.

Definition 20. Volume
A function r : R3 → R3 given by r(u, v, w) =< x(u, v, w), y(u, v, w), z(u, v, w) > is
a volume.
When (u, v, w) makes a right handed system, we have J =

∣∣∣ ∂(x,y,z)
∂(u,v,w)

∣∣∣ = ru × rv · rw
and the element volume is dV = Jdudvdw.
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Definition 21. Contractible
Volume V is Contractible iff very Closed Surface in that can be continuously de-
formed to a point. i.e. the interior of every Volume is also belongs to the set.

Theorem 14. Gauss’s(Divergence)
Let S be a Closed Orientable Surface and also the boundary of a Contractible Space
V ⊂ R3 and let F be a Vector Field. Then∫∫

S

F · dS =

∫∫∫
V

divFdV

Here we select n such that it is out from the volume V .

Note 2. Similar definitions and theorems leading to the Stoke’s theorem can be done
here. For example iff F = curlA (A is Vector Potential, note also that div(curlA) =
0) then closed surface integral is 0(Solenoidal). On the other hand on a Contractible
Space divF = 0(Incompressible) implies the same.

Example 9. Let V be the volume bounded by the surfaces S1 : z = 2x + 3, S2 :
z = x2 + y2. Verify the Divergence Theorem on each surface for the vector field
F =< xy, yz, zx >.

Example 10. Us the Divergence Theorem to prove the Archimedes Principle: up-
thrust=weight of the liquid displaced.
Also prove that the resultant forces on the horizontal plane are zero.

Example 11. Let V be the volume bounded by the two surfaces S1 and S2 and
let S = S1 ∪ S2. Two surfaces intersect on the curve C. Apply both Stoke’s and
Divergence theorems to show that

∫ ∫
S curlF · dS = 0

Example 12. Given
1. two scalar fields φ, ψ
2. two vector fields F ,G
3. three vector algebraic operations: addition,scalar product, cross product, dot prod-
uct
4. three differential operators: grad, div, curl
Find how many scalar fields and vector fields can be made with only one operation.
Also apply the operations given in 4 to each of the above fields and try to expand
the answer by simply writing ∇ =

∑
k ek

∂
∂xk

and F =
∑

k ekFk. Some answers are
given below
∇ · (∇× F ) = 0
∇× (∇φ) = 0
∇× (∇× F ) = ∇(∇ · F )− (∇ · ∇)F
∇× (F ×G) = (G · ∇)F − (F · ∇)G
∇ · (φF ) = φ∇ · F +∇φ · F
∇(F ·G) = (F · ∇)G + (G · ∇)F + F × (∇×G) + G× (∇× F )

Example 13. Consider Maxwell’s equations
Gauss Laws: ∇ ·E = ρ

ε0
, ∇ ·B = 0
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Faraday’s Law: ∇×E = −∂B
∂t

Amphere’s Law: ∇×B = µ0

(
J + ε0

∂E
∂t

)
simplified to ∇×B = 1

c2
∂E
∂t in vacuum.

Show that the Electric Field in vacuum E satisfies the wave equation: ∂2E
∂t2 = c2∇2E

where c=speed of light in vacuum.

Example 14.
1. Prove

∫∫
S φdS =

∫∫∫
V ∇φdV

2. Prove the Chandrasekhar-Wentzel lemma
∮
C r× (dr×n) = −

∫∫
S(r×n)∇·ndS

using any method different to the one found on Wikipedia.
Also verify the above result on the upper half sphere with center at the origin and
radius R.

Definition 22. Curvilinear Coordinates
x = x(u1, u2, u3), y = y(u1, u2, u3), z = z(u1, u2, u3), J =

∣∣∣ ∂(x,y,z)
∂(u1,u2,u3)

∣∣∣ 6= 0

Scaling Factors and Unit Vectors: ∂r
∂u1

= h1e1,
∂r
∂u2

= h2e2,
∂r
∂u3

= h3e3

Element position vector: dr = h1e1du1 + h2e2du2 + h3e3du3

Element arc length: ds2 = dr · dr =
(
du1 du2 du3

)
g

du1

du2

du3


g is the Matric Tensor

Definition 23. Orthogonal Curvilinear Coordinates
e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2

Theorem 15. results in orthogonal curvilinear coordinates

g =

h2
1 0 0

0 h2
2 0

0 0 h2
3


Element volume: dV = h1h2h3du1du2du3 =

√
det gdu1du2du3

gradF = 1
h1

∂(h1F1)
∂u1

+ 1
h2

∂(h2F2)
∂u2

+ 1
h3

∂(h3F3)
∂u3

divF = 1
h1h2h3

[
∂(F1h2h3)

∂u1
+ ∂(h1F2h3)

∂u2
+ ∂(h1h2F3)

∂u3

]
curlF =

∣∣∣∣∣∣
h1e1 h2e2 h3e3
∂
∂u1

∂
∂u2

∂
∂u3

h1F1 h2F2 h3F3

∣∣∣∣∣∣
Definition 24.
Cylindrical Polar Coordinates: x = ρ cos θ, y = ρ sin θ, z = z
Spherical Polar Coordinates: x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ

Example 15. Find grad and div in the cylindrical polar coordinate system.
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2 Complex Analysis

Definition 25. Let z = x+ iy = reiθ then
Real Part: Rez = x, Imaginary Part: Imz = y, Conjugate:z = x− iy
Absolute Value: |z| = r =

√
x2 + y2

Principal Argument: Arg z = θ such that −π < θ ≤ π
Principal Logarithm: Log z = log |z|+ iArg z
Principal Square Root:

√
z =

√
|z|eArgz/2

Example 16. Express zw in terms of z, w and find conditions for z = x + iy and
w = a+ ib to be perpendicular and parallel. Here z =< x, y > and w =< a, b >.

Definition 26. Complex Limit
limz→a f(z) = L⇔ ∀ε > 0∃δ > 0∀z, 0 < |z − a| < δ ⇒ |f(z)− L| < ε.

Definition 27. Differentiability
Iff limz→a

f(z)−f(a)
z−a = lim∆z→0

f(a+∆z)−f(a)
∆z exists we say that f is differentiable (f ∈

D) at a and denote its value by f ′(a).

Theorem 16. Iff f = u+iv ∈ D then u, v ∈ D and satisfy the Cauchy-Riemann(CR)
Equations ux = vy, uy = −vx.

Theorem 17. Let f = u+ iv ∈ D. Then ∇2u = 0 and ∇2v = 0.
Such functions are called Harmonic.

Example 17. Express the derivative of f = u + iv in terms of div and curl of the
vector field F =< u, v >.

Definition 28. Analytic(Holomorphic) Function (f ∈ A)
f ∈ D on a neighbourhood of a.
It follows that for a open region B ⊂ C, f ∈ D on B ⇔ f ∈ A on B

Example 18. Find the differentiable points of z2, |z|2, z and determine their analytic
points.
Also express the derivative whenever it is existing.

Definition 29. Let C be a path given by z(t) = x(t) + iy(t) for t ∈ [a, b] and
f(z) = u(x, y) + iv(x, y). Then the complex integral

∫
C f(z)dz is defined as the line

integral
∫ b
a f(z)dzdtdt =

∫
C(udx− vdy) + i

∫
C(vdx+ udy).

Example 19. Show that
∫
f ′(z)dz = f(z) + c

Theorem 18. Let C be a loop in a simply connected region.
Iff f ∈ A then

∮
C f(z)dz = 0.

Theorem 19. Cauchy Integral Formula
Let f ∈ A and C be a loop in a simply connected region and a be a point inside C.
Then f(a) = 1

2πi

∮
C
f(z)
z−adz.

Theorem 20. Let f ∈ A and C be a loop in a simply connected region and a be a
point inside C. Then f (k)(a) = k!

2πi

∮
C

f(z)
(z−a)k+1dz.
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Example 20. Find
∮
C

z2−2
(z−2)2(z−3)(z−4)dz where points 2, 3 are inside and 4 is outside

of the curve c.

Theorem 21. f ∈ A ⇒ f ∈ C∞. i.e Analytic functions are infinitely differentiable.

Theorem 22. Taylor Series
Let f ∈ A in the region |z − a| < R and let C be a loop in that region. Then we

have f(z) =
∑∞

k=0 ak(z − a)k where ak = 1
2πi

∮
C

f(z)
(z−a)k+1dz = f (k)(a)

k! .
supR is called the Radius of Convergence and the corresponding region is called the
Region of Convergence.

Example 21.
Find the Taylor series of f(z) = 1

1+z2 at 0 and use it to explain the reason for the
convergence of the real valued function 1

1+x2 for −1 < x < 1.

Definition 30. Singular Points
Non-Analytic points a of f are called singular points.
1. Isolated Singular Point: ∃δ > 0∀z, 0 < |z − a| < δ ⇒ f ∈ A. ie f is analytic on
some punctured disk centered at a. There are three types as we will see below.
2. Non-Isolated Singular Point: Singular points which are not isolated
2.1 Branch Cuts: Ex. Arg z,Log z,

√
z along the non-positive real axis.

2.2 Other: Ex. tan 1
z at z = 0.

Theorem 23. Laurent Series
Let f ∈ A in the region R1 < |z − a| < R2 and let C be a loop in that region. Then

we have f(z) =
∑∞

k=−∞ ak(z − a)k where ak = 1
2πi

∮
C

f(z)
(z−a)k+1dz.

supR2 and inf R1 corresponds to the Region of Convergence.
We also have a−1 = 1

2πi

∮
C f(z)dz. If a is an isolated singular point of f then we

call a−1 as Res(f, a), Residue of f at a.

Example 22. Consider the function f(z) = 1
(z−1)(z−2)2 .

1. Find the Laurent series expansions of f(z) at 0 for |z| < 1, 1 < |z| < 2, 2 < |z|.
2. Find the Laurent series expansions of f(z) at 2 for 0 < |z − 2| < 1.

Definition 31. Further classification of Isolated Singularities.
If a is an isolated singularity of f we can find the Laurent Series expansion
f(z) =

∑∞
k=−∞ ak(z − a)k valid for 0 < |z − a| < R2

1.1 Removable Singularity: ak = 0 for all k < 0.
1.2 Pole of Order n: a−n 6= 0 and ak = 0 for all k < −n.
1.3 Essential Singularity: ak 6= 0 for an infinite number of k < 0.

Theorem 24. Let a be an isolated singularity of f .
Then |f(z)| → ∞ as z → a iff a is a pole.

Theorem 25. If a is a pole of order n of f , then
Res(f, a) = 1

(n−1)! limz→a
dn−1

dzn−1f(z)(z − a)n

Theorem 26. Let bj are isolated singularities of f which are the only singularities
of f inside the loop C. Then

∮
C f(z)dz = 2πi

∑
j Res(f, bj).
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Theorem 27. Complex Inversion Formula for Laplace Transform
Let |f(t)| ≤ Meat so the Laplace Transform F (s) be valid for Re s > a and let
lim|s|→∞ |F (s)| = 0. Then the inverse Laplace transform f(t) is given by

f(t) = 1
2πi

∫ b+i∞
b−i∞ F (s)estds = Sum of Residues of F (s)est for Re s ≤ a.

Example 23. Find the Inverse Laplace Transform of 1
(s−1)(s−2)2 and confirm the

answer by the usual method.

Example 24. Find the following real integrals∫∞
0

1
1+x4dx,

∫∞
0

sinx
x(1+x2)dx,

∫∞
0

√
x

(x+1)2dx


