MA2023-17S3-MID-20190318-Page 1 of 6	Field:	Index:
--------------------------------------	--------	--------

Q1. Use Spherical Polar Coordinates to write the position vector $r = r(\phi, \theta)$ on the surface of a sphere with centre **0** and radius *R*. Find the partial derivatives r_{ϕ} and r_{θ} . Also find a UNIT normal vector out from the surface $n = n(\phi, \theta)$ and its partial derivatives n_{ϕ} and n_{θ} .

MA2023-17S3-MID-20190318-Page 2 of 6	Field:	Index:
--------------------------------------	--------	--------

Q2. Note that each n_{ϕ} , n_{θ} are on the plane containing r_{ϕ} and r_{θ} . So write each n_{ϕ} , n_{θ} as linear combinations of r_{ϕ} and r_{θ} and find the 2X2 Shape Matrix S such that $\binom{-n_{\phi}}{-n_{\theta}} = S\binom{r_{\phi}}{r_{\theta}}$. Also find the Gaussian Curvature of the surface $K = \det S$.

MA2023-17S3-MID-20190318-Page 3 of 6	Field:	Index:	
--------------------------------------	--------	--------	--

Q3. Consider the Electric Field **E** at the position vector **r** due to a positive charge Q placed at the origin (r = 0) in a medium of permittivity ε given by $E = \frac{Q}{4\pi\varepsilon ||\mathbf{r}||^3} \mathbf{r}$ when $\mathbf{r} \neq \mathbf{0}$. Show that div E = 0.

MA2023-17S3-MID-20190318-Page 4 of 6	Field:	Index:

Q4. It can be shown that the Electric Flux $\Phi = \oint_S \mathbf{E} \cdot d\mathbf{S} = \frac{Q}{\varepsilon}$ through any sphere centred at the origin. Prove that the same result holds for any closed orientable surface S that contains the origin. Also show that the Electric Flux $\Phi = \oint_S \mathbf{E} \cdot d\mathbf{S} = 0$ through any closed orientable surface that does not contain the origin.

MA2023-17S3-MID-20190318-Page 5 of 6	Field:	Index:
--------------------------------------	--------	--------

Q5. Prove the Archimedes principle(upthrust = weight of the liquid displayed).

Q6. Assume that the upthrust mentioned in Q5 is the resultant force in the Z direction. Now show that the resultant forces in the X and Y directions are 0 each.