Q1. Use Spherical Polar Coordinates to write the position vector $\boldsymbol{r}=\boldsymbol{r}(\phi, \theta)$ on the surface of a sphere with centre $\mathbf{0}$ and radius $R$. Find the partial derivatives $\boldsymbol{r}_{\boldsymbol{\phi}}$ and $\boldsymbol{r}_{\boldsymbol{\theta}}$. Also find a UNIT normal vector out from the surface $\boldsymbol{n}=\boldsymbol{n}(\phi, \theta)$ and its partial derivatives $\boldsymbol{n}_{\boldsymbol{\phi}}$ and $\boldsymbol{n}_{\theta}$.

Q2. Note that each $\boldsymbol{n}_{\boldsymbol{\phi}}, \boldsymbol{n}_{\theta}$ are on the plane containing $\boldsymbol{r}_{\boldsymbol{\phi}}$ and $\boldsymbol{r}_{\theta}$. So write each $\boldsymbol{n}_{\boldsymbol{\phi}}, \boldsymbol{n}_{\theta}$ as linear combinations of $\boldsymbol{r}_{\boldsymbol{\phi}}$ and $\boldsymbol{r}_{\boldsymbol{\theta}}$ and find the 2 X 2 Shape Matrix $S$ such that $\binom{-\boldsymbol{n}_{\boldsymbol{\phi}}}{-\boldsymbol{n}_{\theta}}=S\binom{\boldsymbol{r}_{\boldsymbol{\phi}}}{\boldsymbol{r}_{\theta}}$. Also find the Gaussian Curvature of the surface $K=\operatorname{det} S$.

Q3. Consider the Electric Field $\boldsymbol{E}$ at the position vector $\boldsymbol{r}$ due to a positive charge $Q$ placed at the origin $(\boldsymbol{r}=\mathbf{0})$ in a medium of permittivity $\varepsilon$ given by $\boldsymbol{E}=\frac{Q}{4 \pi \varepsilon\|\boldsymbol{r}\|^{3}} \boldsymbol{r}$ when $\boldsymbol{r} \neq \mathbf{0}$. Show that $\operatorname{div} \boldsymbol{E}=0$.

Q4. It can be shown that the Electric Flux $\Phi=\oiint_{S} \boldsymbol{E} \cdot d \boldsymbol{S}=\frac{Q}{\varepsilon}$ through any sphere centred at the origin. Prove that the same result holds for any closed orientable surface $S$ that contains the origin. Also show that the Electric Flux $\Phi=\oiint_{S} \boldsymbol{E} \cdot d \boldsymbol{S}=0$ through any closed orientable surface that does not contain the origin.

Q5. Prove the Archimedes principle(upthrust $=$ weight of the liquid displayed).

Q6. Assume that the upthrust mentioned in $Q 5$ is the resultant force in the $Z$ direction. Now show that the resultant forces in the $X$ and $Y$ directions are 0 each.

