MA2023-Calculus-14S3-BM+EN+ME-Quizzes-2016/06/01

Quiz 1 Let $\mathbf{r}(t) = \langle a \cos t, a \sin t, ct \rangle$. Find $\mathbf{T}, \mathbf{N}, \mathbf{B}, \kappa, \tau$

Quiz 2 Let $\mathbf{F}(x, y) = \langle 3x^2 - 2xy, 2y^2 - x^2 \rangle$. Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ form (0, 0) to (1, 1) for C along y = x and $y = x^2$. Find the scalar potential ϕ of \mathbf{F} . Show that if $\mathbf{F} = \nabla \phi$ then $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of the path.

Quiz 3 Let $\mathbf{F}(x, y) = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$. Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ form (1, 0) to (-1, 0) for C along the upper and lower halves of the circle $x^2 + y^2 = 1$ and over straight lines through (1, 0), (1, 1), (-1, 1), (-1, 0). Is \mathbf{F} conservative? Is \mathbf{F} irrotational ?

Quiz 4 Let $\mathbf{F}(x, y) = \langle 3x^2 - 2xy, 2y^2 - 2xy \rangle$. Verify the Green's theorem for the region bounded by y = x and $y = x^2$.

Quiz 5 Use double integrals and change of variable to find the value of $\int_0^\infty e^{-x^2} dx$.

Quiz 6 Consider the vector field $\mathbf{F}(x, y, z) = \langle x^2y, y^2z, z^2x \rangle$. Let *C* be the curve of intersection of the surfaces $A_1 : z = x^2 + y^2$ and $A_2 : z = 2x + 3$. Verify the Stoke's theorem for the surface A_1/A_2 and also find the surface area of A_2/A_1 .

Quiz 7 Consider the vector field $\mathbf{F}(x, y, z) = \langle x^2 y, y^2 z, z^2 x \rangle$. Let V be the volume bounded by the surfaces $z = x^2 + y^2$ and z = 2x + 3. Verify the Divergence theorem. Also find the volume of V.

Quiz 8 Is $\langle \mathbb{R}, \cdot, + \rangle$ a field? How to convert $\mathbb{R}^2 = \{(x, y) | x, y \in \mathbb{R}\}$ to a field?

Quiz 9 Let f = u + iv be dirrerentiable. Show that u_x, u_y, v_x, v_y exists and satisfy the CR equations: $u_x = v_y, u_y = -v_x$. Also if C is a loop in a simply connected region prove that $\oint_C f(z)dz = 0$.

Quiz 10 Let $f(z) = \frac{z}{(z-1)^2(z-2)}$. Find constants a_k such that $f(z) = \sum_{k=-\infty}^{\infty} a_k (z-1)^k$.

Quiz 11 Find $\int_0^\infty \frac{1}{1+x^4} dx$

Quiz 12 Find $\mathcal{L}^{-1}\left\{\frac{s}{(s-1)^2(s-2)}\right\}$.

Quiz 13 Find the image of the lines $x, y = \cdots, -3, -1, 1, 3, \cdots$ under the function $f(z) = z^2$