MA2023-14S3-MID-20160425-Page 1 of 4	Field:
Name:	Index Number:

Q1. Prove that the sum of the potential energy and the kinetic energy of a particle with mass m under the force \boldsymbol{F} is a constant. In mechanics the potential energy V is defined as $\boldsymbol{F}=-\nabla V$ and the kinetic energy K is defined as $K=\frac{1}{2} m v^{2}$ where v is velocity.

Q2. Consider the Maxwell's Equations in space where there is no charge or current:
$\boldsymbol{\nabla} \cdot \boldsymbol{E}=0$
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}$
$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$
$\boldsymbol{\nabla} \times \boldsymbol{B}=\frac{1}{c^{2}} \frac{\partial \boldsymbol{E}}{\partial t}$
Where \boldsymbol{E} is the electric field, \boldsymbol{B} is the magnetic field, c is the speed of light and t is time.
Show that both fields \boldsymbol{E} and \boldsymbol{B} satisfy the Wave Equation $\frac{\partial^{2} \boldsymbol{F}}{\partial t^{2}}=k^{2} \boldsymbol{\nabla}^{2} \boldsymbol{F}$ where \boldsymbol{F} is the field and k is a constant.
Hint: Use $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{F})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{E})-\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{F}$ without proof. Here $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{F}=(\boldsymbol{\nabla} \cdot \boldsymbol{\nabla}) \boldsymbol{F}$

MA2023-14S3-MID-20160425-Page 3 of 4	Field:
Name:	Index Number:

Q3. Magnetic field \boldsymbol{B} induced at the origin by a curve C (given by the position vector) carrying a steady current I in the direction of the curve C is given by the Biot-Savart Law:

$$
\boldsymbol{B}=\frac{\mu_{0} I}{4 \pi} \int_{C} \frac{\boldsymbol{r} \times \boldsymbol{d} \boldsymbol{r}}{\|\boldsymbol{r}\|^{3}}
$$

Here μ_{0} is the permeability of the vacuum. Find the magnetic field when the curve C is the circle with radius a and center at the origin with the direction of the curve is anticlockwise.

MA2023-14S3-MID-20160425-Page 4 of 4	Field:
Name:	Index Number:

Q4. Use Divergence theorem $\iint_{S} \boldsymbol{F} \cdot d \boldsymbol{S}=\iiint_{V} \operatorname{div} \boldsymbol{F} d V$ to prove the Archimedes's Principle(upward buoyant force that is exerted on a body immersed in a fluid is equal to the weight of the fluid that the body displaces). Hint: Fluid force is normal to the surface.

