MA2023-14S3-MID-20160425-Page 1 of 4	Field:
Name:	Index Number:

Q1. Prove that the sum of the potential energy and the kinetic energy of a particle with mass m under the force F is a constant. In mechanics the potential energy V is defined as $F = -\nabla V$ and the kinetic energy K is defined as $K = \frac{1}{2}mv^2$ where V is velocity.

MA2023-14S3-MID-20160425-Page 2 of 4	Field:
Name:	Index Number:

Q2. Consider the Maxwell's Equations in space where there is no charge or current:

$$\nabla \cdot \mathbf{E} = 0$$
 $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$

Where \boldsymbol{E} is the electric field, \boldsymbol{B} is the magnetic field, c is the speed of light and t is time.

Show that both fields ${\pmb E}$ and ${\pmb B}$ satisfy the Wave Equation $\frac{\partial^2 {\pmb F}}{\partial t^2} = k^2 {\pmb \nabla}^2 {\pmb F}$ where ${\pmb F}$ is the field and k is a constant.

Hint: Use
$$\nabla \times (\nabla \times F) = \nabla (\nabla \cdot E) - \nabla^2 F$$
 without proof. Here $\nabla^2 F = (\nabla \cdot \nabla) F$

MA2023-14S3-MID-20160425-Page 3 of 4	Field:
Name:	Index Number:

Q3. Magnetic field \boldsymbol{B} induced at the origin by a curve C (given by the position vector) carrying a steady current I in the direction of the curve C is given by the Biot-Savart Law:

$$\boldsymbol{B} = \frac{\mu_0 I}{4\pi} \int\limits_C \frac{\boldsymbol{r} \times \boldsymbol{dr}}{\|\boldsymbol{r}\|^3}$$

Here μ_0 is the permeability of the vacuum. Find the magnetic field when the curve C is the circle with radius a and center at the origin with the direction of the curve is anticlockwise.

MA2023-14S3-MID-20160425-Page 4 of 4	Field:
Name:	Index Number:

Q4. Use Divergence theorem $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_V \operatorname{div} \mathbf{F} \, dV$ to prove the Archimedes's Principle(upward buoyant force that is exerted on a body immersed in a fluid is equal to the weight of the fluid that the body displaces). **Hint**: Fluid force is normal to the surface.