MA2023/MA2073-14S3-Differential Geometry-ucjaya@uom.lk-20160607 Blue colored sections will not be tested for the final exam.

Definition 1. Let $\boldsymbol{r} : [a,b] \to \mathbb{R}^3$ given by $\boldsymbol{r}(t) = \langle x(t), y(t), z(t) \rangle$ be a curve in \mathbb{R}^3 . Let $P = \{t_0, t_1, \ldots, t_n\}$ with $t_0 = a, t_n = b$ with $t_k > t_{k-1}$ be a partition of [a,b] i.e. $P \in \mathcal{P}[a,b]$. Define $\ell(\boldsymbol{r},P) = \sum_{k=1}^n \|\boldsymbol{r}(t_k) - \boldsymbol{r}(t_{k-1})\|$ and the length of the curve by $\ell(\boldsymbol{r}) = \sup\{\ell(\boldsymbol{r},P) | P \in \mathcal{P}[a,b]\}$

Definition 2. *r* is Rectifiable iff $\ell(r) \in \mathbb{R}$

Theorem 1. If $\mathbf{r} \in \mathcal{C}^1$ then $\ell(\mathbf{r}) = \int_a^b \|\mathbf{r}'(t)\| dt$ and $\frac{d\ell}{dt} = \|\mathbf{r}'(t)\|$

Definition 3. Unit Tangent Vector $\mathbf{T} = \frac{d\mathbf{r}}{d\ell}$, Unit Normal Vector $\mathbf{N} = \frac{1}{\kappa} \frac{d\mathbf{T}}{d\ell}$ Unit Binormal Vector $\mathbf{B} = \mathbf{T} \times \mathbf{N}$, Curvature $\kappa = \|\frac{d\mathbf{T}}{d\ell}\|$, Torsion $-\tau \mathbf{N} = \frac{d\mathbf{B}}{d\ell}$

Theorem 2. Frenet-Serret Formulas

$$egin{pmatrix} rac{dm{T}}{d\ell} \ rac{dm{N}}{dm{\ell}} \ rac{dm{B}}{d\ell} \end{pmatrix} = egin{pmatrix} 0 & \kappa & 0 \ -\kappa & 0 & au \ 0 & au & 0 \end{pmatrix} egin{pmatrix} m{T} \ m{N} \ m{B} \end{pmatrix}$$

Definition 4. Velocity $\boldsymbol{v} = \frac{d\boldsymbol{r}}{dt} = \dot{\boldsymbol{r}}$, Acceleration $\boldsymbol{a} = \frac{d\boldsymbol{v}}{dt} = \dot{\boldsymbol{v}}$ **Theorem 3.** $\kappa = \frac{\|\boldsymbol{v} \times \boldsymbol{a}\|}{\|\boldsymbol{v}\|^3}$, $\tau = \frac{\boldsymbol{v} \times \boldsymbol{a} \cdot \dot{\boldsymbol{a}}}{\|\boldsymbol{v} \times \boldsymbol{a}\|^2}$

Definition 5. Path C is a function $\mathbf{r} : [a, b] \subset \mathbb{R} \to \mathbb{R}^n$ which is smooth (i.e. \mathcal{C}^{∞}) and one to one on (a, b). Also the Direction of the path is from a to b

Definition 6. Loop is a Path such that $\mathbf{r}(a) = \mathbf{r}(b)$. Usually the Direction of a Loop is taken anticlockwise.

Definition 7. Vector Field $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$ is a \mathcal{C}^1 function.

Definition 8. Line Integral of the Vector Field \mathbf{F} over the Path C given by $\mathbf{r}(t)$ is defined as $\int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$. We simply write $\int_C \mathbf{F} \cdot d\mathbf{r}$ and $\oint_C \mathbf{F} \cdot d\mathbf{r}$ when the Path is a Loop.

Definition 9. Vector Field \mathbf{F} is Path Independent iff its Line Integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of the path C between every two points of its domain.

Theorem 4. *F* is Path Independent $\Leftrightarrow \oint_C F \cdot dr = 0$ for every Loop C.

Definition 10. Vector Field \mathbf{F} is Conservative iff there exists a \mathcal{C}^2 function $\phi : D \subset \mathbb{R}^n \to \mathbb{R}$ such that $\mathbf{F} = \nabla \phi$

Theorem 5. Path Independent \Leftrightarrow Conservative.

The \Leftarrow direction $\int_{a}^{b} \nabla \phi(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \phi(\mathbf{r}(b)) - \phi(\mathbf{r}(a))$ is called the First Fundamental Theorem of Line Integrals.

The \Rightarrow direction $\nabla \int_{a}^{s} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \mathbf{F}(\mathbf{r}(s))$ is called the Second Fundamental Theorem of Line Integrals.

Definition 11. Curl of a Vector Field \mathbf{F} is $\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F}$ where $\operatorname{grad} = \nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$ is the gradient operator.

Definition 12. Vector Field \mathbf{F} is Irrotational iff curl $\mathbf{F} = \mathbf{0}$.

Theorem 6. Conservative \Rightarrow Irrotational.i.e. $\operatorname{curl}(\operatorname{grad}\phi) = \nabla \times \nabla \phi = \mathbf{0}$

Definition 13. A Path Connected domain is a domain D where there is a path between every two points of the domain.

Definition 14. A Homeomorphism is a continuous and one to one function $f: X \to Y$ which is having a continuous inverse f^{-1} . We say that X and Y are Homeomorphic iff there is a Homeomorphism between them.

Definition 15. D is Simply Connected iff it is Path Connected and Paths with the same end points are Homeomorphic. *i.e.* every Loop is Homeomorphic to a point. *i.e.* the interior of every Loop is also belongs to the set.

Theorem 7. Green's

Let C be a Loop and also the boundary of a Simply Connected region $A \subset \mathbb{R}^2$ and let $\mathbf{F} = \langle F_1, F_2 \rangle$ be a Vector Field. Then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_A \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) ds$$

Theorem 8. Stoke's

Let C be a Loop and also the boundary of a Simply Connected surface $S \subset \mathbb{R}^3$ and let **F** be a Vector Field. Then

$$\oint_C \boldsymbol{F} \cdot d\boldsymbol{r} = \iint_S \operatorname{curl} \boldsymbol{F} \cdot d\boldsymbol{s}$$

Here $d\mathbf{s} = \mathbf{n}ds$ where \mathbf{n} is a unit normal vector to the surface S which makes a right handed system with the direction of the Loop C. When $\mathbf{r}(u, v) \in \mathcal{C}^1$ is the surface S then $d\mathbf{s} = (\mathbf{r}_u \times \mathbf{r}_v) dudv$

Theorem 9. If F is defined on a Simply Connected domain and **F** is Irrotational \Rightarrow **F** is Conservative.

Definition 16. Divergence of a Vector Field \mathbf{F} is div $\mathbf{F} = \nabla \cdot \mathbf{F}$

Theorem 10. Gauss's(Divergence) Let S be a Closed Surface and also the boundary of a Contractible Space $V \subset \mathbb{R}^3$ and let **F** be a Vector Field. Then

$$\iint_{S} \boldsymbol{F} \cdot d\boldsymbol{s} = \iiint_{V} \operatorname{div} \boldsymbol{F} dV$$

Here $d\mathbf{s} = \mathbf{n}ds$ where \mathbf{n} is a unit normal vector to S out from the region V. When $\mathbf{r}(u, v, w) \in \mathcal{C}^1$ is the space V then $dV = (\mathbf{r}_u \times \mathbf{r}_v \cdot \mathbf{r}_w) dudvdw$. Similar definitions and theorems leading to the Stoke's theorem can be done here. For example iff $\mathbf{F} = \operatorname{curl} \mathbf{A}$ (\mathbf{A} is Vector Potential, note also that $\operatorname{div}(\operatorname{curl} \mathbf{A}) = 0$) then closed surface integral is 0(Solenoidal). On the other hand on a Contractible Space $\operatorname{div} \mathbf{F} = 0$ (Incompressible) implies the same. MA2023/MA2073-14S3-Complex Analysis-ucjaya@uom.lk-20160607 Blue colored sections will not be tested for the final exam.

Definition 17. Let $z = x + iy = re^{i\theta} = |z|e^{i(\theta+2n\pi)}, n \in \mathbb{Z}$ then Arg $z = \theta$ such that $-\pi < \theta \le \pi$ Log $z = \log |z| + i$ Arg z:Principal Logarithm $\sqrt{z} = \sqrt{|z|}e^{Argz/2}$

Definition 18. Complex Limit $\lim_{z \to a} f(z) = L \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 \forall z, 0 < |z - a| < \delta \Rightarrow |f(z) - L| < \epsilon.$

Definition 19. Differentiability Iff $\lim_{z\to a} \frac{f(z)-f(a)}{z-a} = \lim_{\Delta z\to 0} \frac{f(a+\Delta z)-f(a)}{\Delta z}$ exists we say that f is differentiable $(f \in \mathcal{D})$ at a and denote its value by f'(a).

Theorem 11. Iff $f = u + iv \in \mathcal{D}$ then $u, v \in \mathcal{D}$ and satisfy the Cauchy-Riemann(CR) Equations $u_x = v_y, u_y = -v_x$.

Theorem 12. Let $f = u + iv \in \mathcal{D}$. Then $\nabla^2 u = 0$ and $\nabla^2 v = 0$. Such functions are called Harmonic.

Definition 20. Analytic(Holomorphic) Function $(f \in \mathcal{A})$ $f \in \mathcal{D}$ on a neighbourhood of a. It follows that for $B \subset \mathbb{C}$, $f \in \mathcal{D}$ on $B \Leftrightarrow f \in \mathcal{A}$ on B

Definition 21. Singular Points

Non-Analytic points a of f are called singular points. 1. Isolated Singular Point: $\exists \delta > 0 \forall z, 0 < |z - a| < \delta \Rightarrow f \in A$. ie f is analytic on some punctured disk centered at a. There are three types as we will see below. 2. Non-Isolated Singular Point: Singular points which are not isolated

2.1 Branch Cuts: Ex. Arg z, Log z, \sqrt{z} along the non-positive real axis.

2.2 Other: Ex. $\tan \frac{1}{z}$ at z = 0.

Definition 22. Let C be a path given by z(t) = x(t) + iy(t) for $t \in [a, b]$ and f(z) = u(x, y) + iv(x, y). Then the complex integral $\int_C f(z)dz$ is defined as the line integral $\int_a^b f(z)\frac{dz}{dt}dt = \int_C (udx - vdy) + i \int_C (vdx + udy)$.

Theorem 13. Let C be a loop in a simply connected region. Iff $f \in \mathcal{A}$ then $\oint_C f(z)dz = 0$.

Theorem 14. Cauchy Integral Formula Let $f \in \mathcal{A}$ and C be a loop in a simply connected region and a be a point inside C. Then $f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z-a} dz$.

Theorem 15. Mean Value Property Let $f \in \mathcal{A}$ and C and D be the circle and disk with center a and radius R. Then $f(a) = \frac{1}{2\pi} \int_0^{2\pi} f\left(a + Re^{i\theta}\right) d\theta = \frac{1}{2\pi R} \int_C f d\ell$ and $f(a) = \frac{1}{\pi R^2} \iint_D f ds$. Similar properties hold for Harmonic functions.

Theorem 16. Let $f \in \mathcal{A}$ and C be a loop in a simply connected region and a be a point inside C. Then $f^{(k)}(a) = \frac{k!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{k+1}} dz$.

Theorem 17. $f \in \mathcal{A} \Rightarrow f \in \mathcal{C}^{\infty}$. *i.e Analytic functions are infinitely differentiable.*

Theorem 18. Taylor Series

Let $f \in \mathcal{A}$ in the region |z - a| < R and let C be a loop in that region. Then we have $f(z) = \sum_{k=0}^{\infty} a_k (z - a)^k$ where $a_k = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{k+1}} dz = \frac{f^{(k)}(a)}{k!}$. sup R is called the Radius of Convergence and the corresponding region is called the Region of Convergence.

Theorem 19. Laurent Series

Let $f \in \mathcal{A}$ in the region $R_1 < |z-a| < R_2$ and let C be a loop in that region. Then we have $f(z) = \sum_{k=-\infty}^{\infty} a_k(z-a)^k$ where $a_k = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{k+1}} dz$. sup R_2 and inf R_1 corresponds to the Region of Convergence. We also have $a_{-1} = \frac{1}{2\pi i} \oint_C f(z) dz$. If a is an isolated singular point of f then we call a_{-1} as $\operatorname{Res}(f, a)$, Residue of f at a.

Definition 23. Further classification of Isolated Singularities. If a is an isolated singularity of f we can find the Laurent Series expansion $f(z) = \sum_{-\infty}^{\infty} a_k(z-a)^k$ valid for $0 < |z-a| < R_2$ 1.1 Removable Singularity: $a_k = 0$ for all k < 0. 1.2 Pole of Order n: $a_{-n} \neq 0$ and $a_k = 0$ for all k < -n. 1.3 Essential Singularity: $a_k = 0$ for an infinite number of k < 0.

Theorem 20. Let a be an isolated singularity of f. Then $|f(z)| \to \infty$ as $z \to a$ iff a is a pole.

Theorem 21. If a is a pole of order n of f, then $\operatorname{Res}(f, a) = \frac{1}{(n-1)!} \lim_{z \to a} \frac{d^{n-1}}{dz^{n-1}} f(z)(z-a)^n$

Theorem 22. Let b_j are isolated singularities of f which are the only singularities of f inside the loop C. Then $\oint_C f(z)dz = \sum_j \text{Res}(f, b_j)$.

Theorem 23. Complex Inversion Formula for Laplace Transform Let the Laplace Transform F(s) be valid for Re s > a. Then the inverse Laplace transform f(t) is given by $f(t) = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} F(z)e^{zt}dz = Sum \text{ of Residues of } F(z)e^{zt} \text{ for Re } z \leq a.$

Theorem 24. Maximum Modulus Principle Let $f \in A$ on D and not a constant. Then the maximum of |f(z)| occurs on the boundary of D. Similar properties hold for Harmonic functions.

Theorem 25. Louville's Theorem Let $f \in \mathcal{A}$ and bounded on \mathbb{C} then f is a constant. Iff $f \in \mathcal{A}$ on \mathbb{C} then f is called Entire.

Theorem 26. Fundamental Theorem of Algebra Every polynomial of degree larger than zero has a root.

Theorem 27. Two curves mapped by an analytic function with a non-zero derivative preserves the angle between them. Such mappings are called Conformal.