Q1. Consider the Legendre ODE: $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$. If x is a solution, find the other linearly independent solution.

Q2. Find the Legendre Series for $|x|$ upto 10 terms.
Q3. Solve the Non-homogeneous Associated Legendre ODE:
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\left(2-\frac{1}{1-x^{2}}\right) y=x$.
Q4. Solve the Bessel ODE: $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0$ for $\nu=0$.
Q5. Derive a formula for the Bessel series of the from $f(x)=\sum_{k=0}^{\infty} a_{k} J_{\nu}\left(\lambda_{k} x\right)$ and find two terms of the series for $f(x)=x$. Take $a=\nu=1$.

Q6. Use Laplace Transform to solve the ODE: $y^{\prime \prime}+5 y^{\prime}+6 y=\cos x$, $y(0)=1, y^{\prime}(0)=2$.

Q7. Use Laplace Transform to solve the PDE: $\frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}}+\sin x$, $y(0, t)=0, y(\pi, t)=0, y(x, 0)=0, \frac{\partial y}{\partial t}(x, 0)=0$

Q8. Find the Fourier Series for x^{2} and deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
Q9. Solve the Heat equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ $u(0, t)=0, u(\pi, t)=0 ; t \geq 0 \quad u(x, 0)=x(\pi-x) ; 0 \leq x \leq \pi$.
Use separation of variables(see why $\mu \geq 0$ is not possible) and Fourier series(see how the domain of f can be extended for $[-\pi, 0]$.

Q10. Solve the Wave equation $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$
$u(0, t)=0, u(\pi, t)=0 ; t \geq 0 \quad u(x, 0)=\sin x, \frac{\partial u}{\partial t}(x, 0)=x^{2} ; 0 \leq x \leq \pi$.
Use separation of variables and Fourier series.
Q11. Use Complex Inversion for Laplace Transform to find the Inverse Laplace Transform of $\frac{s}{(s+1)^{2}(s-1)}$. Verify the answer by a different method for Inverse Laplace Transform.

Q12. Prove $\int_{-\infty}^{\infty}|f(x)|^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\mathcal{F} f(x)|^{2} d x$ or $\int_{-\infty}^{\infty} \mathcal{F} f(x) g(x) d x=\int_{-\infty}^{\infty} f(x) \mathcal{F} g(x) d x$ if $f, g \in \mathcal{S}$.

Q13. Use Fourier Transform to Solve the Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ $u(x, 0)=f(x) \quad u(x, y)$ bounded as $y \rightarrow \infty$.
Also compute the answer for $f(x)=x$ for $x>0$ and 0 otherwise.
Q14. Find the range of y for which $y u_{x x}+u_{y y}=0$ is Hyperbolic. Reduce the PDE to its canonical form for Hyperbolic PDEs(only the $u_{s t}$ remaining in the 2nd order terms w.r.t. the new variables $s, t)$.

