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1 Second Order Linear ODE: y′′ + p(x)y′ + q(x)y = r(x)

Solution y = Au(x) +Bv(x) + z(x).
Where u(x), v(x) are Linearly Independent
(i.e. ∀A,B(∀x(Au(x) + Bv(x) = 0)) ⇒ A = B = 0) solutions to the Homogeneous
Equation y′′+ p(x)y′+ q(x)y = 0. Moreover the solution space to the Homogeneous
Equation forms a 2 Dimensional Vector Space Over R and u, v are Basis Vectors
which are not unique.
Any solution to the Homogeneous Equation can be written as a Linear Combination
of the Basis Vector: i.e. Complimentary Solution yc = Au(x) +Bv(x).
The Particular Solution yp = z(x) is the constant-less solution to the Non Homoge-
neous Equation: y′′ + p(x)y′ + q(x)y = r(x).
The constants A,B can be uniquely determined by the Initial Conditions: y(b), y′(b).

1.1 Wronskian Method

Wronskian W (x) =

∣∣∣∣(u(x) v(x)
u′(x) v′(x)

)∣∣∣∣ = u(x)v′(x)− v(x)u′(x)

u, v linearly independent is equivalent to ∀x(W (x) 6= 0).
Wronskian satisfies the 1st order homogeneous equation: W ′(x) + p(x)W (x) = 0.
So we can find W (x) and if we know one solution u(x) to the homogeneous equation
we can find the other solution v(x). This result is equivalent to the Reduction of
Order method where we assume that v(x) = A(x)u(x) and finding a 1st order ode
satisfied by A(x).
Also we can show that the particular solution can be written as z(x) = A(x)u(x) +
B(x)v(x). This method is called the Variation of Parameters and we can show that

A(x) = −v(x)r(x)
W (x) and B(x) = u(x)r(x)

W (x) .

So we can generate the full solution if we know only one solution u(x) to the homo-
geneous equation.

1.2 Frobenius Method

Consider the 2nd order linear homogeneous ODE, y′′+ p(x)y′+ q(x)y = 0. Here we
try to find at least one solution u(x) as a power series of (x− b). It is convenient to
find the constants A,B when the initial conditions y(b), y′(b) are stated at b.
Let p(x) =

∑∞
k=0 pk−1(x − b)k−1 and q(x) =

∑∞
k=0 pk−2(x − b)k−2. We are looking

for a solution of the form y =
∑∞

k=0 ak(x − b)k+c. We need to find both ak and c.
Any coefficients ak remain indeterminate will become the constants A,B. Here c
can provides powers of (x − b) which are not integer and also help generate both
solutions u, v by the same procedure.
We have y′ =

∑∞
k=0 ak(k+c)(x−b)k+c−1 and y′′ =

∑∞
k=0 ak(k+c)(k+c−1)(x−b)k+c−2.

Substituting into the ODE we have,∑∞
k=0 ak(k + c)(k + c− 1)(x− b)k+c−2

+ (
∑∞

i=0 pi−1(x− b)i−1)(
∑∞

j=0 aj(j + c)(x− b)j+c−1)
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+ (
∑∞

i=0 qi−2(x− b)i−2)(
∑∞

j=0 aj(x− b)j+c) = 0∑∞
k=0 ak(k + c)(k + c− 1)(x− b)k+c−2

+
∑∞

i=0

∑∞
j=0 aj(j + c)pi−1(x− b)i+j+c−2

+
∑∞

i=0

∑∞
j=0 ajqi−2(x− b)i+j+c−2 = 0

Letting i+ j = k and writing i = k − j we arrive at∑∞
k=0 ak(k + c)(k + c− 1)(x− b)k+c−2

+
∑∞

k=0

(∑k
j=0 aj(j + c)pk−j−1

)
(x− b)k+c−2

+
∑∞

k=0

(∑k
j=0 ajqk−j−2

)
(x− b)k+c−2 = 0∑∞

k=0

(
ak(k + c)(k + c− 1) +

∑k
j=0 aj((j + c)pk−j−1 + qk−j−2)

)
(x− b)k+c−2 = 0

So we want for all k ≥ 0
0 = ak(k + c)(k + c− 1) +

∑k
j=0 aj((j + c)pk−j−1 + qk−j−2)

= ak((k + c)(k + c− 1 + p−1) + q−2) +
∑k−1

j=0 aj((j + c)pk−j−1 + qk−j−2)

= ak((k + c)2 + (−1 + p−1)(k + c) + q−2) +
∑k−1

j=0 aj((j + c)pk−j−1 + qk−j−2)

For k = 0 we have a0(c
2 + (−1 + p−1)c+ q−2) = 0.

To keep a0 as a constant we need c to satisfy the Indicial Equation:
c2 + (−1 + p−1)c+ q−2 = 0. Let the roots be α, β.
Note that the quadratic equation associated with the coefficient of ak is (k + c)2 +
(−1+p−1)(k+c)+q−2 which has roots α−k and β−k. The two quadratic equations
can have a common root, which occurs when β−k = α or when α−k = β. If α < β

this occurs when α+k = β. So this happens when the roots of the indicial equation
is differ by an integer and when we put c = α which is the smaller root. We can
think about 3 cases

Case 1: α 6= β and are not differ by an integer
In this case ak can be expressed by a0 only.
We can have two independent solutions by substituting c = α, β.

Case 2: α 6= β and are differ by an integer k = n.
In this case an can be expressed by a0 only for the larger root c = β and we get one
solution.
But we cannot express an by a0 for the smaller root c = α. So if the equations does
not force a0 = 0, then all coefficients are expressible by a0 and an. Which means
you end up with two solutions followed by two constants a0, an if the second one is
not merely a shift of index of the first one.
But if the equations force a0 = 0 you end up expressing all coefficients by an which
means you get one solution which can still be a shift of index to the c = α case.
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Case 3: α = β
In this case coefficient of ak will never be 0. So close to c = α we can force
ak((k + c)2 + (−1 + p−1)(k + c) + q−2) +

∑k−1
j=0 aj((j + c)pk−j−1 + qk−j−2) = 0 for all

k ≥ 1 and all coefficients can be expressible by a0 and c. We end up with a different
differential equation
y′′ + p(x)y′ + q(x)y = a0(c− α)2xc−2 with y = y(x, c) be a solution.
Note that y = y(x, α) is a solution. We will show that yc(x, α) is the second inde-
pendent solution.
In this context d

dx = ∂
∂x and differentiating both sides partially wrt c and with

y ∈ C3 we have: ∂
∂c
∂2y
∂x2 + p(x) ∂∂c

∂y
∂x + q(x)∂y∂c = ∂2

∂x2

(
∂y
∂c

)
+ p(x) ∂

∂x

(
∂y
∂c

)
+ q(x)

(
∂y
∂c

)
=

2a0(c− α)xc−2 + a0(c− α)2xc−2 log x

Now putting c = α we have: ∂2

∂x2

(
∂y
∂c |c=α

)
+ p(x) ∂

∂x

(
∂y
∂c |c=α

)
+ q(x)

(
∂y
∂c |c=α

)
= 0.

This means ∂y
∂c |c=α = yc(x, α) is the second solution.

1.3 Radius of Convergence

Power series are functions of the form f(x) =
∑∞

k=0 ak(x − b)k. They converge
Absolutely and Uniformly for |x − b| < R and diverge for |x − b| > R for some
R ≥ 0. R is called the radius of convergence and we can use the Root test to find
it: R = 1

limk→∞ |ak|1/k
. Let f, g are power series with radii of convergence Rf , Rg.

f + g is a power series (f + g)(x) =
∑∞

k=0Ak(x− b)k where Ak = ak + bk.
fg is a power series defined as the Cauchy Product (fg)(x) =

∑∞
k=0Ak(x−b)k where

Ak =
∑k

j=0 ajbk−j. Both the sum and product power series converges with a radius
of convergence min(Rf , Rg).
With p(x) =

∑∞
k=0 pk−1(x− b)k−1 and q(x) =

∑∞
k=0 pk−2(x− b)k−2 note that

(x−b)p(x) and (x−b)2q(x) have power series and have radius of convergence Rp and
Rq respectively. Note that radii of convergence of y, y′, y′′ are all equal and be R.
Since we are looking for solutions to y′′+p(x)y′+ q(x)y = 0 or y′′ = −p(x)y′− q(x)y
we have: R = min(min(Rp, R),min(Rq, R)). R = min(Rp, Rq) satisfies this equation.

1.4 Legendre Equation

Legendre ODE (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0
Solution: y = APn(x) +BQn(x)
Pn(x):Legendre functions of the first kind(Legendre polynomials when n ∈ Z+)
Qn(x):Legendre functions of the second kind
Pn(x) satisfies the Rodrigue’s formula: Pn(x) = 1

2nn!
dn

dxn

(
(x2 − 1)n

)
For f, g ∈ C[−1, 1] with the Inner Product < f, g >=

∫ 1

−1 f(x)g(x)dx, Legendre

polynomials satisfies the Orthogonality Condition:
∫ 1

−1 Pm(x)Pn(x)dx = 0 if m 6= n
and 2

2n+1 if m = n.
This allows us to write the Legendre Series: f(x) =

∑∞
k=0 akPk(x) where ak =

2k+1
2

∫ 1

−1 f(x)Pk(x)dx.



MA2013-16S3-Notes ucjaya@uom.lk-2018/05/25 Page 4 of 6

1.5 Associated Legendre Equation

Associated Legendre ODE (1− x2)y′′ − 2xy′ +
(
n(n+ 1)− m2

1−x2

)
y = 0

Solution: y = APm
n (x) +BQm

n (x)
Pm
n (x) = (1−x2)m/2 dm

dxmPn(x):Associated Legendre functions of the first kind(Associated
Legendre polynomials when n ∈ Z+)
Qn(x) = (1 − x2)m/2 dm

dxmQn(x):Associated Legendre functions of the second kind.
Also see the Mathematica file: Legendre.nb

1.6 Gamma Function and Pochhammer Symbol

Gamma Function: Γ(x) =
∫∞

0 e−ttx−1dt, x > 0.
Gamma function satisfies use the formula Γ(x + 1) = xΓ(x) which implies n! =
Γ(n+ 1) for a none negative integer n.

We define the Gamma function for x < 0 by Γ(x) = Γ(x+1)
x .

Since Γ(x) → ∞ as x → 0+ we have |Γ(x)| → ∞ as x → −n where n ∈ Z+.
Pochhammer symbol: (α)k = α(α+ 1) · · · (α+ k − 1). Note that (1)n = n! for none

negative integer n. We can show that (α)k = Γ(α+k)
Γ(α) .

1.7 Bessel Equation

Bessel ODE x2y′′ + xy′ + (x2 − ν2)y = 0
Solution: y = AJν(x) +BYν(x)

Jν(x) =
∑∞

k=0
(−1)k

k!Γ(k+1+ν)

(
x
2

)2k+ν
: Bessel Function of the First Kind

If ν 6∈ Z the solution is y = AJν(x) +BJ−ν(x).
When ν = n ∈ Z we have Jn(x) = (−1)nJ−n(x), so J−n(x) is not the second
independent solution. Note that cosnπ = (−1)n for n ∈ Z. Motivated by this we
define a second solution for ν 6∈ Z:
Yν(x) = Jν(x) cos(πν)−J−ν(x)

sin(πν) , ν ∈ Z: Bessel Function of the second Kind
When ν = n ∈ Z we use the L’Hopital Rule and define:
Yn(x) = 1

π

(
∂
∂νJν(x)|ν=n − (−1)n ∂

∂νJ−ν(x)|ν=n

)
.

Let x = λk, k ≥ 0 be roots of Jν(ax) = 0. For f, g ∈ C1[0, a] with the Inner Product
< f, g >=

∫ a
0 xf(x)g(x)dx, Bessel Functions satisfies the Orthogonality Condition:∫ a

0 xJν(λmx)Jν(λnx)dx = 0 if m 6= n and a2

2 (J ′ν(λna))2 when m = n.
This allows us to write the Bessel Series: f(x) =

∑∞
k=0 akJν(λkx) where ak =

2
a2(J ′ν(λka))

2

∫ a
0 xf(x)Jν(λkx)dx.

Also see the Mathematica file: Bessel.nb
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Definition 1. Lp spaces and norms

‖f‖p =
(∫∞
−∞ |f(t)|pdt

) 1
p ,1 ≤ p <∞, Lp(R) = {f : ‖f‖p <∞}

‖f‖∞ = sup{|f(x)| : x ∈ R}, L∞(R) = {f : ‖f‖∞ <∞}

Definition 2. Schwartz spaces and norms
‖f‖m,n = sup{|xmfn(x)| : x ∈ R}
S = {f ∈ C∞ : ∀m,n ∈ N, ‖f‖m,n <∞}
Note that if f ∈ S then xmfn(x)→ 0 as x→ ±∞ for all m,n ∈ N

Theorem 1.
L2 ⊂ L1 ⊂ L∞

S ⊂ Lp, 1 ≤ p ≤ ∞

Definition 3.
Fourier Transform of f : F(f)(ω) =

∫∞
−∞ f(t)e−iωtdt

Inverse Fourier Transform of F : F−1(F )(t) = 1
2π

∫∞
−∞ F (ω)e−iωtdω

Theorem 2.
If f ∈ L1(R)⇒ F(f)(ω) exists, continuous and → 0 as ω → ±∞
If f ∈ S then D(f) = f ′ ∈ S
If f ∈ S then F(f) ∈ S and F−1F(f) = f so F : S → S is a bijection
If F ∈ S then F−1(F ) ∈ S and FF−1(F ) = F so F−1 : S → S is a bijection

Definition 4.
Inner Product, < f, g >=

∫∞
−∞ f(x)g(x)dx. So ‖f‖2 =

√
< f, f >

(f, g) =
∫∞
−∞ f(x)g(x)dx. So (f, g) =< f, g >

Convolution, (f ∗ g)(t) =
∫∞
−∞ f(x)g(t− x)dx

Theorem 3. f, g ∈ S∫∞
−∞ f

′(x)g(x)dx = −
∫∞
−∞ f(x)g′(x)dx,or (f ′, g) = −(f, g′)

(If, g) = (Ff)(0)(Fg)(0)− (f, Ig), (If)(x) =
∫ x
−∞ f(t)dt

F(eiatf(t))(ω) = iωF(f)(ω − a)
F(f ′)(ω) = iωF(f)(ω)
F(f ′′)(ω) = −ω2F(f)(ω)∫∞
−∞Ff(x)g(x)dx =

∫∞
−∞ f(x)Fg(x)dx, or (Ff, g) = (f,Fg)∫∞

−∞F
−1f(x)g(x)dx =

∫∞
−∞ f(x)F−1g(x)dx, or (F−1f, g) = (f,F−1g)∫∞

−∞ |f(x)|2 = 1
2π

∫∞
−∞ |Ff(x)|2dx or ‖f‖2 = 1√

2π
‖Ff‖2

Note 1. We are going to take f : R→ C in S and going to convert it into a function
f : S → C by f(g) = (f, g) =

∫∞
−∞ f(x)g(x)dx for g ∈ S. We note that

1.f is continuous.
Equivalently if gn → g in S then f(gn)→ f(g) i.e. (f, gn)→ (f, g)
2.f is linear.
Equivalently if g, h ∈ S and a, b ∈ C then f(ag + bh) = af(g) + bf(h) i.e. (f, ag +
bh) = a(f, g) + b(f, h)
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Now consider the four operators defined for f ∈ S:
Differential operator D : (Df)(x) = f ′(x)
Fourier Transform F :
Inverse Fourier Transform F−1 :
Integral operator I : (If)(x) =

∫ x
−∞ f(t)dt

It can be shown that all the above operations except the last one land on S. In other
words if f ∈ S then Df,Ff,F−1f ∈ S.
We also have noted that all the following are true
3. (Df)(g) = −f(Dg) i.e. (Df, g) = −(f,Dg)
4. (Ff)(g) = f(Fg) i.e. (Ff, g) = (f,Fg)
5. (F−1f)(g) = f(F−1g) i.e. (F−1f, g) = (f,F−1g)
6. (If)(g) = (Ff)(0)(Fg)(0)− f(Ig) i.e. (If, g) = (Ff)(0)(Fg)(0)− (f, Ig)
Now we are going to extend the class of functions S to include ”functions” which
are not cooked out of f ∈ S as in the above process.

Definition 5. a Tempered Distribution f ∈ T is a function f : S → C .
Satisfying all the above properties 1 and 2: Continuous and Linear.
We see form the above discussion that S ⊂ T .
For g ∈ S, we will still write f(g) = (f, g) as necessary although there is no (f, g)
realized as an integral
We can use the formulas 3 through 6 to define the operations D,F ,F−1, I on T .
It can be also shown now that all the 4 operations land on T . In other words if
f ∈ T then Df,Ff,F−1f, If ∈ T so D,F ,F−1, I : T → T .

Definition 6.
Delta function δ ∈ T and δ(f) = (δ, f) = f(0)
Heaviside function H(t) = 1 if t ≥ 0 and 0 otherwise
Rectangle Function Π(t) = 1 if −1

2 ≤ t ≤ 1
2 and 0 otherwise.

Sinc Function sincx = sinx
x

Theorem 4.
Fδ = 1
F1 = 2πδ
DH = δ

Iδ = H
F(eiat)(ω) = 2πδ(ω − a)
F(sin at)(ω) = π

i (δ(ω − a)− δ(ω + a))
F(cos at)(ω) = π (δ(ω − a) + δ(ω + a))
F(Π)(ω) = sinc(ω/2)
F(f ∗ g)(ω) = F(f)(ω)F(g)(ω)

Example 1. Use Fourier Transform to Solve the Laplace’s equation ∂2u
∂x2 + ∂2u

∂y2 = 0.
u(x, 0) = f(x), u(x, y) bounded as y →∞.
Compute the answer for f(x) = x for 0 < x < 1 and 0 otherwise.
Do the same question with the given boundary condition replaced by ∂u

∂x(x, 0) = f(x)


