1 Second Order Linear ODE: $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)$

Solution $y=A u(x)+B v(x)+z(x)$.
Where $u(x), v(x)$ are Linearly Independent
(i.e. $\forall A, B(\forall x(A u(x)+B v(x)=0)) \Rightarrow A=B=0)$ solutions to the Homogeneous Equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$. Moreover the solution space to the Homogeneous Equation forms a 2 Dimensional Vector Space Over \mathbb{R} and u, v are Basis Vectors which are not unique.
Any solution to the Homogeneous Equation can be written as a Linear Combination of the Basis Vector: i.e. Complimentary Solution $y_{c}=A u(x)+B v(x)$.
The Particular Solution $y_{p}=z(x)$ is the constant-less solution to the Non Homogeneous Equation: $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)$.
The constants A, B can be uniquely determined by the Initial Conditions: $y(b), y^{\prime}(b)$.

1.1 Wronskian Method

Wronskian $W(x)=\left|\left(\begin{array}{cc}u(x) & v(x) \\ u^{\prime}(x) & v^{\prime}(x)\end{array}\right)\right|=u(x) v^{\prime}(x)-v(x) u^{\prime}(x)$
u, v linearly independent is equivalent to $\forall x(W(x) \neq 0)$.
Wronskian satisfies the 1st order homogeneous equation: $W^{\prime}(x)+p(x) W(x)=0$. So we can find $W(x)$ and if we know one solution $u(x)$ to the homogeneous equation we can find the other solution $v(x)$. This result is equivalent to the Reduction of Order method where we assume that $v(x)=A(x) u(x)$ and finding a 1st order ode satisfied by $A(x)$.
Also we can show that the particular solution can be written as $z(x)=A(x) u(x)+$ $B(x) v(x)$. This method is called the Variation of Parameters and we can show that $A(x)=-\frac{v(x) r(x)}{W(x)}$ and $B(x)=\frac{u(x) r(x)}{W(x)}$.
So we can generate the full solution if we know only one solution $u(x)$ to the homogeneous equation.

1.2 Frobenius Method

Consider the 2nd order linear homogeneous ODE, $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$. Here we try to find at least one solution $u(x)$ as a power series of $(x-b)$. It is convenient to find the constants A, B when the initial conditions $y(b), y^{\prime}(b)$ are stated at b.
Let $p(x)=\sum_{k=0}^{\infty} p_{k-1}(x-b)^{k-1}$ and $q(x)=\sum_{k=0}^{\infty} p_{k-2}(x-b)^{k-2}$. We are looking for a solution of the form $y=\sum_{k=0}^{\infty} a_{k}(x-b)^{k+c}$. We need to find both a_{k} and c. Any coefficients a_{k} remain indeterminate will become the constants A, B. Here c can provides powers of $(x-b)$ which are not integer and also help generate both solutions u, v by the same procedure.
We have $y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+c)(x-b)^{k+c-1}$ and $y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+c)(k+c-1)(x-b)^{k+c-2}$. Substituting into the ODE we have,

$$
\begin{aligned}
& \sum_{k=0}^{\infty} a_{k}(k+c)(k+c-1)(x-b)^{k+c-2} \\
+ & \left(\sum_{i=0}^{\infty} p_{i-1}(x-b)^{i-1}\right)\left(\sum_{j=0}^{\infty} a_{j}(j+c)(x-b)^{j+c-1}\right)
\end{aligned}
$$

$+\left(\sum_{i=0}^{\infty} q_{i-2}(x-b)^{i-2}\right)\left(\sum_{j=0}^{\infty} a_{j}(x-b)^{j+c}\right)=0$

$$
\sum_{k=0}^{\infty} a_{k}(k+c)(k+c-1)(x-b)^{k+c-2}
$$

$+\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{j}(j+c) p_{i-1}(x-b)^{i+j+c-2}$
$+\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{j} q_{i-2}(x-b)^{i+j+c-2}=0$
Letting $i+j=k$ and writing $i=k-j$ we arrive at
$\sum_{k=0}^{\infty} a_{k}(k+c)(k+c-1)(x-b)^{k+c-2}$
$+\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j}(j+c) p_{k-j-1}\right)(x-b)^{k+c-2}$
$+\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} q_{k-j-2}\right)(x-b)^{k+c-2}=0$
$\sum_{k=0}^{\infty}\left(a_{k}(k+c)(k+c-1)+\sum_{j=0}^{k} a_{j}\left((j+c) p_{k-j-1}+q_{k-j-2}\right)\right)(x-b)^{k+c-2}=0$
So we want for all $k \geq 0$
$0=a_{k}(k+c)(k+c-1)+\sum_{j=0}^{k} a_{j}\left((j+c) p_{k-j-1}+q_{k-j-2}\right)$
$=a_{k}\left((k+c)\left(k+c-1+p_{-1}\right)+q_{-2}\right)+\sum_{j=0}^{k-1} a_{j}\left((j+c) p_{k-j-1}+q_{k-j-2}\right)$
$=a_{k}\left((k+c)^{2}+\left(-1+p_{-1}\right)(k+c)+q_{-2}\right)+\sum_{j=0}^{k-1} a_{j}\left((j+c) p_{k-j-1}+q_{k-j-2}\right)$
For $k=0$ we have $a_{0}\left(c^{2}+\left(-1+p_{-1}\right) c+q_{-2}\right)=0$.
To keep a_{0} as a constant we need c to satisfy the Indicial Equation:
$c^{2}+\left(-1+p_{-1}\right) c+q_{-2}=0$. Let the roots be α, β.
Note that the quadratic equation associated with the coefficient of a_{k} is $(k+c)^{2}+$ $\left(-1+p_{-1}\right)(k+c)+q_{-2}$ which has roots $\alpha-k$ and $\beta-k$. The two quadratic equations can have a common root, which occurs when $\beta-k=\alpha$ or when $\alpha-k=\beta$. If $\alpha<\beta$ this occurs when $\alpha+k=\beta$. So this happens when the roots of the indicial equation is differ by an integer and when we put $c=\alpha$ which is the smaller root. We can think about 3 cases

Case 1: $\alpha \neq \beta$ and are not differ by an integer
In this case a_{k} can be expressed by a_{0} only.
We can have two independent solutions by substituting $c=\alpha, \beta$.

Case 2: $\alpha \neq \beta$ and are differ by an integer $k=n$.
In this case a_{n} can be expressed by a_{0} only for the larger root $c=\beta$ and we get one solution.
But we cannot express a_{n} by a_{0} for the smaller root $c=\alpha$. So if the equations does not force $a_{0}=0$, then all coefficients are expressible by a_{0} and a_{n}. Which means you end up with two solutions followed by two constants a_{0}, a_{n} if the second one is not merely a shift of index of the first one.
But if the equations force $a_{0}=0$ you end up expressing all coefficients by a_{n} which means you get one solution which can still be a shift of index to the $c=\alpha$ case.

Case 3: $\alpha=\beta$
In this case coefficient of a_{k} will never be 0 . So close to $c=\alpha$ we can force $a_{k}\left((k+c)^{2}+\left(-1+p_{-1}\right)(k+c)+q_{-2}\right)+\sum_{j=0}^{k-1} a_{j}\left((j+c) p_{k-j-1}+q_{k-j-2}\right)=0$ for all $k \geq 1$ and all coefficients can be expressible by a_{0} and c. We end up with a different differential equation
$y^{\prime \prime}+p(x) y^{\prime}+q(x) y=a_{0}(c-\alpha)^{2} x^{c-2}$ with $y=y(x, c)$ be a solution.
Note that $y=y(x, \alpha)$ is a solution. We will show that $y_{c}(x, \alpha)$ is the second independent solution.
In this context $\frac{d}{d x}=\frac{\partial}{\partial x}$ and differentiating both sides partially wrt c and with $y \in \mathcal{C}^{3}$ we have: $\frac{\partial}{\partial c} \frac{\partial^{2} y}{\partial x^{2}}+p(x) \frac{\partial}{\partial c} \frac{\partial y}{\partial x}+q(x) \frac{\partial y}{\partial c}=\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial y}{\partial c}\right)+p(x) \frac{\partial}{\partial x}\left(\frac{\partial y}{\partial c}\right)+q(x)\left(\frac{\partial y}{\partial c}\right)=$ $2 a_{0}(c-\alpha) x^{c-2}+a_{0}(c-\alpha)^{2} x^{c-2} \log x$
Now putting $c=\alpha$ we have: $\frac{\partial^{2}}{\partial x^{2}}\left(\left.\frac{\partial y}{\partial c}\right|_{c=\alpha}\right)+p(x) \frac{\partial}{\partial x}\left(\left.\frac{\partial y}{\partial c}\right|_{c=\alpha}\right)+q(x)\left(\left.\frac{\partial y}{\partial c}\right|_{c=\alpha}\right)=0$. This means $\left.\frac{\partial y}{\partial c}\right|_{c=\alpha}=y_{c}(x, \alpha)$ is the second solution.

1.3 Radius of Convergence

Power series are functions of the form $f(x)=\sum_{k=0}^{\infty} a_{k}(x-b)^{k}$. They converge Absolutely and Uniformly for $|x-b|<R$ and diverge for $|x-b|>R$ for some $R \geq 0 . R$ is called the radius of convergence and we can use the Root test to find it: $R=\frac{1}{\lim _{k \rightarrow \infty}\left|a_{k}\right|^{1 / k}}$. Let f, g are power series with radii of convergence R_{f}, R_{g}. $f+g$ is a power series $(f+g)(x)=\sum_{k=0}^{\infty} A_{k}(x-b)^{k}$ where $A_{k}=a_{k}+b_{k}$. $f g$ is a power series defined as the Cauchy Product $(f g)(x)=\sum_{k=0}^{\infty} A_{k}(x-b)^{k}$ where $A_{k}=\sum_{j=0}^{k} a_{j} b_{k-j}$. Both the sum and product power series converges with a radius of convergence $\min \left(R_{f}, R_{g}\right)$.
With $p(x)=\sum_{k=0}^{\infty} p_{k-1}(x-b)^{k-1}$ and $q(x)=\sum_{k=0}^{\infty} p_{k-2}(x-b)^{k-2}$ note that $(x-b) p(x)$ and $(x-b)^{2} q(x)$ have power series and have radius of convergence R_{p} and R_{q} respectively. Note that radii of convergence of $y, y^{\prime}, y^{\prime \prime}$ are all equal and be R. Since we are looking for solutions to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ or $y^{\prime \prime}=-p(x) y^{\prime}-q(x) y$ we have: $R=\min \left(\min \left(R_{p}, R\right), \min \left(R_{q}, R\right)\right) . R=\min \left(R_{p}, R_{q}\right)$ satisfies this equation.

1.4 Legendre Equation

Legendre ODE $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$
Solution: $y=A P_{n}(x)+B Q_{n}(x)$
$P_{n}(x)$:Legendre functions of the first kind(Legendre polynomials when $n \in \mathbb{Z}^{+}$)
$Q_{n}(x)$:Legendre functions of the second kind
$P_{n}(x)$ satisfies the Rodrigue's formula: $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(\left(x^{2}-1\right)^{n}\right)$
For $f, g \in \mathcal{C}[-1,1]$ with the Inner Product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$, Legendre polynomials satisfies the Orthogonality Condition: $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0$ if $m \neq n$ and $\frac{2}{2 n+1}$ if $m=n$.
This allows us to write the Legendre Series: $f(x)=\sum_{k=0}^{\infty} a_{k} P_{k}(x)$ where $a_{k}=$ $\frac{2 k+1}{2} \int_{-1}^{1} f(x) P_{k}(x) d x$.

1.5 Associated Legendre Equation

Associated Legendre $\operatorname{ODE}\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\left(n(n+1)-\frac{m^{2}}{1-x^{2}}\right) y=0$
Solution: $y=A P_{n}^{m}(x)+B Q_{n}^{m}(x)$
$P_{n}^{m}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{n}(x)$:Associated Legendre functions of the first kind(Associated Legendre polynomials when $n \in \mathbb{Z}^{+}$)
$Q_{n}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} Q_{n}(x)$:Associated Legendre functions of the second kind.
Also see the Mathematica file: Legendre.nb

1.6 Gamma Function and Pochhammer Symbol

Gamma Function: $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t, x>0$.
Gamma function satisfies use the formula $\Gamma(x+1)=x \Gamma(x)$ which implies $n!=$ $\Gamma(n+1)$ for a none negative integer n.
We define the Gamma function for $x<0$ by $\Gamma(x)=\frac{\Gamma(x+1)}{x}$.
Since $\Gamma(x) \rightarrow \infty$ as $x \rightarrow 0^{+}$we have $|\Gamma(x)| \rightarrow \infty$ as $x \rightarrow-n$ where $n \in \mathbb{Z}^{+}$. Pochhammer symbol: $(\alpha)_{k}=\alpha(\alpha+1) \cdots(\alpha+k-1)$. Note that $(1)_{n}=n$! for none negative integer n. We can show that $(\alpha)_{k}=\frac{\Gamma(\alpha+k)}{\Gamma(\alpha)}$.

1.7 Bessel Equation

Bessel ODE $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0$
Solution: $y=A J_{\nu}(x)+B Y_{\nu}(x)$
$J_{\nu}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+1+\nu)}\left(\frac{x}{2}\right)^{2 k+\nu}$: Bessel Function of the First Kind
If $\nu \notin \mathbb{Z}$ the solution is $y=A J_{\nu}(x)+B J_{-\nu}(x)$.
When $\nu=n \in \mathbb{Z}$ we have $J_{n}(x)=(-1)^{n} J_{-n}(x)$, so $J_{-n}(x)$ is not the second independent solution. Note that $\cos n \pi=(-1)^{n}$ for $n \in \mathbb{Z}$. Motivated by this we define a second solution for $\nu \notin \mathbb{Z}$:
$Y_{\nu}(x)=\frac{J_{\nu}(x) \cos (\pi \nu)-J_{-\nu}(x)}{\sin (\pi \nu)}, \nu \in \mathbb{Z}$: Bessel Function of the second Kind
When $\nu=n \in \mathbb{Z}$ we use the L'Hopital Rule and define:
$Y_{n}(x)=\frac{1}{\pi}\left(\left.\frac{\partial}{\partial \nu} J_{\nu}(x)\right|_{\nu=n}-\left.(-1)^{n} \frac{\partial}{\partial \nu} J_{-\nu}(x)\right|_{\nu=n}\right)$.
Let $x=\lambda_{k}, k \geq 0$ be roots of $J_{\nu}(a x)=0$. For $f, g \in \mathcal{C}^{1}[0, a]$ with the Inner Product $<f, g>=\int_{0}^{a} x f(x) g(x) d x$, Bessel Functions satisfies the Orthogonality Condition: $\int_{0}^{a} x J_{\nu}\left(\lambda_{m} x\right) J_{\nu}\left(\lambda_{n} x\right) d x=0$ if $m \neq n$ and $\frac{a^{2}}{2}\left(J_{\nu}^{\prime}\left(\lambda_{n} a\right)\right)^{2}$ when $m=n$.
This allows us to write the Bessel Series: $f(x)=\sum_{k=0}^{\infty} a_{k} J_{\nu}\left(\lambda_{k} x\right)$ where $a_{k}=$ $\frac{2}{a^{2}\left(J_{\nu}^{\prime}\left(\lambda_{k} a\right)\right)^{2}} \int_{0}^{a} x f(x) J_{\nu}\left(\lambda_{k} x\right) d x$.
Also see the Mathematica file: Bessel.nb

Definition 1. L^{p} spaces and norms
$\|f\|_{p}=\left(\int_{-\infty}^{\infty}|f(t)|^{p} d t\right)^{\frac{1}{p}}, 1 \leq p<\infty, L^{p}(\mathbb{R})=\left\{f:\|f\|_{p}<\infty\right\}$
$\|f\|_{\infty}=\sup \{|f(x)|: x \in \mathbb{R}\}, L^{\infty}(\mathbb{R})=\left\{f:\|f\|_{\infty}<\infty\right\}$
Definition 2. Schwartz spaces and norms
$\|f\|_{m, n}=\sup \left\{\left|x^{m} f^{n}(x)\right|: x \in \mathbb{R}\right\}$
$\mathcal{S}=\left\{f \in \mathcal{C}^{\infty}: \forall m, n \in \mathbb{N},\|f\|_{m, n}<\infty\right\}$
Note that if $f \in \mathcal{S}$ then $x^{m} f^{n}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$ for all $m, n \in \mathbb{N}$

Theorem 1.

$L^{2} \subset L^{1} \subset L^{\infty}$
$\mathcal{S} \subset L^{p}, 1 \leq p \leq \infty$

Definition 3.

Fourier Transform of $f: \mathcal{F}(f)(\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t$
Inverse Fourier Transform of $F: \mathcal{F}^{-1}(F)(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega t} d \omega$

Theorem 2.

If $f \in L^{1}(\mathbb{R}) \Rightarrow \mathcal{F}(f)(\omega)$ exists, continuous and $\rightarrow 0$ as $\omega \rightarrow \pm \infty$
If $f \in \mathcal{S}$ then $\mathcal{D}(f)=f^{\prime} \in \mathcal{S}$
If $f \in \mathcal{S}$ then $\mathcal{F}(f) \in \mathcal{S}$ and $\mathcal{F}^{-1} \mathcal{F}(f)=f$ so $\mathcal{F}: \mathcal{S} \rightarrow \mathcal{S}$ is a bijection
If $F \in \mathcal{S}$ then $\mathcal{F}^{-1}(F) \in \mathcal{S}$ and $\mathcal{F \mathcal { F }}^{-1}(F)=F$ so $\mathcal{F}^{-1}: \mathcal{S} \rightarrow \mathcal{S}$ is a bijection

Definition 4.

Inner Product, $<f, g>=\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x$. So $\|f\|_{2}=\sqrt{<f, f>}$
$(f, g)=\int_{-\infty}^{\infty} f(x) g(x) d x$. So $(f, g)=<f, \bar{g}>$
Convolution, $(f * g)(t)=\int_{-\infty}^{\infty} f(x) g(t-x) d x$
Theorem 3. $f, g \in \mathcal{S}$
$\int_{-\infty}^{\infty} f^{\prime}(x) g(x) d x=-\int_{-\infty}^{\infty} f(x) g^{\prime}(x) d x$, or $\left(f^{\prime}, g\right)=-\left(f, g^{\prime}\right)$
$(\mathcal{I} f, g)=(\mathcal{F} f)(0)(\mathcal{F} g)(0)-(f, \mathcal{I} g),(\mathcal{I} f)(x)=\int_{-\infty}^{x} f(t) d t$
$\mathcal{F}\left(e^{i a t} f(t)\right)(\omega)=i \omega \mathcal{F}(f)(\omega-a)$
$\mathcal{F}\left(f^{\prime}\right)(\omega)=i \omega \mathcal{F}(f)(\omega)$
$\mathcal{F}\left(f^{\prime \prime}\right)(\omega)=-\omega^{2} \mathcal{F}(f)(\omega)$
$\int_{-\infty}^{\infty} \mathcal{F} f(x) g(x) d x=\int_{-\infty}^{\infty} f(x) \mathcal{F} g(x) d x$, or $(\mathcal{F} f, g)=(f, \mathcal{F} g)$
$\int_{-\infty}^{\infty} \mathcal{F}^{-1} f(x) g(x) d x=\int_{-\infty}^{\infty} f(x) \mathcal{F}^{-1} g(x) d x$, or $\left(\mathcal{F}^{-1} f, g\right)=\left(f, \mathcal{F}^{-1} g\right)$
$\int_{-\infty}^{\infty}|f(x)|^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\mathcal{F} f(x)|^{2} d x$ or $\|f\|_{2}=\frac{1}{\sqrt{2 \pi}}\|\mathcal{F} f\|_{2}$
Note 1. We are going to take $f: \mathbb{R} \rightarrow \mathbb{C}$ in \mathcal{S} and going to convert it into a function $f: \mathcal{S} \rightarrow \mathbb{C}$ by $f(g)=(f, g)=\int_{-\infty}^{\infty} f(x) g(x) d x$ for $g \in \mathcal{S}$. We note that 1.f is continuous.

Equivalently if $g_{n} \rightarrow g$ in \mathcal{S} then $f\left(g_{n}\right) \rightarrow f(g)$ i.e. $\left(f, g_{n}\right) \rightarrow(f, g)$
2.f is linear.

Equivalently if $g, h \in \mathcal{S}$ and $a, b \in \mathbb{C}$ then $f(a g+b h)=a f(g)+b f(h)$ i.e. $(f, a g+$ $b h)=a(f, g)+b(f, h)$

Now consider the four operators defined for $f \in \mathcal{S}$:
Differential operator $\mathcal{D}:(\mathcal{D} f)(x)=f^{\prime}(x)$
Fourier Transform \mathcal{F} :
Inverse Fourier Transform \mathcal{F}^{-1} :
Integral operator $\mathcal{I}:(\mathcal{I} f)(x)=\int_{-\infty}^{x} f(t) d t$
It can be shown that all the above operations except the last one land on \mathcal{S}. In other words if $f \in \mathcal{S}$ then $\mathcal{D} f, \mathcal{F} f, \mathcal{F}^{-1} f \in \mathcal{S}$.
We also have noted that all the following are true
3. $(\mathcal{D} f)(g)=-f(\mathcal{D} g)$ i.e. $(\mathcal{D} f, g)=-(f, \mathcal{D} g)$
4. $(\mathcal{F} f)(g)=f(\mathcal{F} g)$ i.e. $(\mathcal{F} f, g)=(f, \mathcal{F} g)$
5. $\left(\mathcal{F}^{-1} f\right)(g)=f\left(\mathcal{F}^{-1} g\right)$ i.e. $\left(\mathcal{F}^{-1} f, g\right)=\left(f, \mathcal{F}^{-1} g\right)$
6. $(\mathcal{I} f)(g)=(\mathcal{F} f)(0)(\mathcal{F} g)(0)-f(\mathcal{I} g)$ i.e. $(\mathcal{I} f, g)=(\mathcal{F} f)(0)(\mathcal{F} g)(0)-(f, \mathcal{I} g)$

Now we are going to extend the class of functions \mathcal{S} to include "functions" which are not cooked out of $f \in \mathcal{S}$ as in the above process.

Definition 5. a Tempered Distribution $f \in \mathcal{T}$ is a function $f: \mathcal{S} \rightarrow \mathbb{C}$.
Satisfying all the above properties 1 and 2: Continuous and Linear.
We see form the above discussion that $\mathcal{S} \subset \mathcal{T}$.
For $g \in \mathcal{S}$, we will still write $f(g)=(f, g)$ as necessary although there is no (f, g) realized as an integral
We can use the formulas 3 through 6 to define the operations $\mathcal{D}, \mathcal{F}, \mathcal{F}^{-1}, \mathcal{I}$ on \mathcal{T}. It can be also shown now that all the 4 operations land on \mathcal{T}. In other words if $f \in \mathcal{T}$ then $\mathcal{D} f, \mathcal{F} f, \mathcal{F}^{-1} f, \mathcal{I} f \in \mathcal{T}$ so $\mathcal{D}, \mathcal{F}, \mathcal{F}^{-1}, \mathcal{I}: \mathcal{T} \rightarrow \mathcal{T}$.

Definition 6.

Delta function $\delta \in \mathcal{T}$ and $\delta(f)=(\delta, f)=f(0)$
Heaviside function $H(t)=1$ if $t \geq 0$ and 0 otherwise
Rectangle Function $\Pi(t)=1$ if $-\frac{1}{2} \leq t \leq \frac{1}{2}$ and 0 otherwise.
Sinc Function $\operatorname{sincx}=\frac{\sin x}{x}$

Theorem 4.

$\mathcal{F} \delta=1$
$\mathcal{F} 1=2 \pi \delta$
$\mathcal{D} H=\delta$
$\mathcal{I} \delta=H$
$\mathcal{F}\left(e^{i a t}\right)(\omega)=2 \pi \delta(\omega-a)$
$\mathcal{F}(\sin a t)(\omega)=\frac{\pi}{i}(\delta(\omega-a)-\delta(\omega+a))$
$\mathcal{F}(\cos a t)(\omega)=\pi(\delta(\omega-a)+\delta(\omega+a))$
$\mathcal{F}(\Pi)(\omega)=\operatorname{sinc}(\omega / 2)$
$\mathcal{F}(f * g)(\omega)=\mathcal{F}(f)(\omega) \mathcal{F}(g)(\omega)$
Example 1. Use Fourier Transform to Solve the Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$. $u(x, 0)=f(x), u(x, y)$ bounded as $y \rightarrow \infty$.
Compute the answer for $f(x)=x$ for $0<x<1$ and 0 otherwise.
Do the same question with the given boundary condition replaced by $\frac{\partial u}{\partial x}(x, 0)=f(x)$

