MA2013-Mid-16S3-20180222-Page 1 of 3	Field:	Index:
		1

Q1. Use power series on BOTH sides of the ODE: y'' - xy' + y = 1 to find the solution in the form $y = a_1u(x) + a_2v(x) + z(x)$. DO NOT assume any solution or use Wronskian. Here a_1, a_2 are coefficients of the power series expansion of y at 0.

MA2013-Mid-16S3-20180222-Page 2 of 3	Field:	Index:

Q2. In Q1 we found the solution to y'' - xy' + y = 1 in the form $y = a_1u(x) + a_2v(x) + z(x)$. Use Wronskian to express v(x) in terms of the erfi function and other well-known functions up to a constant. Here $\operatorname{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} dt$.

MA2013-Mid-16S3-20180222-Page 3 of 3	Field:	Index:
--------------------------------------	--------	--------

Q3. Consider the equivalent ODE: f''(t) - tf'(t) + f(t) = 1. Find F(s), the Laplace Transform of the solution. DO NOT find the Inverse Laplace Transform. Use the result $\mathcal{L}(tf(t))(s) = -F'(s)$ where $F(s) = \mathcal{L}(f(t))(s)$.