Q1. Use power series on BOTH sides of the ODE: $y^{\prime \prime}-x y^{\prime}+y=1$ to find the solution in the form $y=a_{1} u(x)+a_{2} v(x)+z(x)$. DO NOT assume any solution or use Wronskian. Here a_{1}, a_{2} are coefficients of the power series expansion of y at 0 .

Q2. In Q1 we found the solution to $y^{\prime \prime}-x y^{\prime}+y=1$ in the form $y=a_{1} u(x)+a_{2} v(x)+z(x)$. Use Wronskian to express $v(x)$ in terms of the erfi function and other well-known functions up to a constant. Here $\operatorname{erfi}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{t^{2}} d t$.

Q3. Consider the equivalent ODE: $f^{\prime \prime}(t)-t f^{\prime}(t)+f(t)=1$. Find $F(s)$, the Laplace Transform of the solution. DO NOT find the Inverse Laplace Transform. Use the result $\mathcal{L}(t f(t))(s)=-F^{\prime}(s)$ where $F(s)=\mathcal{L}(f(t))(s)$.

