University of Moratuwa, Faculty of Engineering, Department of Mathematics-20150427 BSc Engineering Honors Degree-13 batch

Semester 3: 2015/04/27-2015/08/21-15 weeks, Reading Week-2015/07/11-2015/07/26 EN(112)/ER(46)/ME(100)/MT(41)-(299)-Fri 13.15: 15.15-NA2

Lecturer: Dr. Udaya Chinthaka Jayatilake

Email: <u>ucjaya@uom.lk</u>, Mobile: 0770064997, Room: MA218, Ext. 6305 Web: http://www.math.mrt.ac.lk/content/drudayajayatilake-teaching

Module Code	MA2013	Title	Differential Equations			
Credits	02	Hours/ Week	Lectures	02	Pre-requisites	MA 1023
			Lab/Tutorials	-		

Learning Outcomes

At the end of this module the student should be able to

- Apply Fourier series approximations for periodic functions in real world situations.
- Solve initial-boundary-value problems involving partial differential equations.
- Apply Laplace transform and Fourier transform methods to solve differential equations in engineering applications

Outline Syllabus

Fourier Series Approximation

- Fourier coefficients, Dirichlet's condition, odd and even functions. Half range series.
- Trigonometric approximation to discrete data.

Partial Differential Equations

- Classification of second-order partial differential equations.
- Solutions by separation of variables.
- Fourier series application to boundary value problems.

Laplace Transform and Applications

- Laplace transforms of elementary functions and some basic theorems on Laplace transform.
- Application of Laplace transforms to solution of differential equations and system of differential equations.
- Transfer functions, convolution theorem, concepts of stability and controllability.

Fourier Transform and Applications

• Non-periodic function, Fourier transforms, properties of Fourier transform and applications.

Detailed Syllabus

ODE: Legendre, Leguerre, Bessel, Airy

PDE: Laplace, Heat, Wave, Schordinger's

Methods: Wronskian(done in S2), Power Series Method, Laplace Transform, Complex Inversion Formula, Fourier Series, Fourier Transform, Convolution, Separation of variables.

Method of Assessment

End of semester examination: 2 hour closes book paper: 70% Mid semester examination: 1 hour open book paper: 10%

In-class assessments: 10% Take-home assessment: 10%

Note

80% attendance is compulsory.

Please bring your calculators and laptops with Matlab and Mathematica installed.

We will solve one problem in detail at each lecture.