Quiz 1. Write $x^{5}-x-1=0$ as $x=g(x)$ in 6 different ways to be solved by the iterative method. Which methods converge?

Quiz 2. Let $\left\{x_{k}\right\}_{k=0}^{\infty}$ be the sequence generated according to $x_{k+1}=g\left(x_{k}\right)$ in the iterative method. Show that $\left|x_{m}-x_{n}\right| \leq \frac{L^{m}}{1-L}\left|x_{1}-x_{0}\right|$.

Quiz 3. Consider the iterative method $x=(1+x)^{1 / 5}=g(x)$ for finding the real roots of $x^{5}-x-1=0$ in $[1,2]$. Find the no. of iterations need to find the root to an accuracy of 0.001 and that root.

Quiz 4. Let $f, g \in \mathcal{C}$ and g does not change sign. Then show that there exists $\zeta \in(a, b)$ such that $\int_{a}^{b} f(x) g(x) d x=f(\zeta) \int_{a}^{b} g(x) d x$.
Let $f \in \mathcal{C}^{n+1}$. Deduce that $\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t=\frac{f^{(n+1)}(\zeta)}{(n+1)!}(x-a)^{n+1}$ where ζ is between x and a.

Quiz 5. Let $f \in \mathcal{C}^{n+1}$. Prove by induction that $f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+$ $\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t$

Quiz 6. Suppose we want to find the roots of $2 x-\cos x=0$ and $[0,1]$ contains a root. For each of the methods Bisection/Iterative/Newton's, find the no. of iterations needed to find the root to an accuracy of 0.001 starting from a suitable x_{0} and find the root by each of these methods.

Quiz 7. Suppose we want to find the roots of $f(x)=\tan ^{-1} x=0$, using the Newton's method, starting from x_{0}. Find the value of z such that the method enters into a cycle for $z=x_{0}$.

Quiz 8. Find the number of intervals needed to find the value of $\int_{0}^{1} e^{-\frac{x^{2}}{2}} d x$ accurate to 0.001 using the Trapezoidal rule and find the given integral to that accuracy.

Quiz 9. Given that $\int_{a}^{\infty}|f(x)| d x$ is converging, prove that $\int_{a}^{\infty} f(x) d x$ is converging. Use the above result to prove that $\int_{0}^{\infty} \sin \left(x^{2}\right) d x$ is converging.

Quiz 10. Derive the formula for the Simpson's rule, which approximate the function by a parabola over two intervals.

Quiz 11. Derive an error formula for the Simpson's rule and find the value of $\int_{-1}^{1} e^{-\frac{x^{2}}{2}} d x$ accurate to 0.001.
Quiz 12. For the data set $\left\{\left(x_{k}, y_{k}\right)\right\}, k=0,1$, , n a natural cubic spline is a twice differentiable piecewise cubic polynomial $p(x)$ which satisfies $p\left(x_{k}\right)=y_{k}$ with $p^{\prime \prime}\left(x_{0}\right)=$ $p^{\prime \prime}\left(x_{n}\right)=0$. Let $p(x)=\sum_{k=0}^{n-1} p_{k}(x)$ where $p_{k}(x)$ is the part of $p(x)$ on $\left[x_{k}, x_{k+1}\right]$ which is 0 elsewhere. Assume that $p_{k}(x)=a_{k}\left(x-x_{k}\right)^{3}+b_{k}\left(x-x_{k}\right)^{2}+c_{k}\left(x-x_{k}\right)+d_{k}$ and that $x_{k+1}-x_{k}=h$ is a constant. With $s_{k}=p^{\prime \prime}\left(x_{k}\right)$ derive the formula $s_{k+2}+4 s_{k+1}+s_{k}=\frac{6}{h^{2}} h^{2}\left(y_{k+2}-2 y_{k+1}+y_{k}\right), k=0,1,, n-2$. Also write the system of equations in matrix form that must be solved find s_{k} for $k=1,, n-1$. Get the value of USD w.r.t. LKR for the 1 st day of every month this year and predict the value for the 1st February next year using natural cubic splines (just show the data set, the calculated s_{k} values and the final answer).

Quiz 13. One method of doing numerical integration is Gaussian Quadrature. Note that both the Trapezoidal and the Simpsons rules looks like $\int_{a}^{b} f(x) d x \approx \sum_{k} w_{k} f\left(x_{k}\right)$ and we knew x_{k} and found w_{k}. In this method we find both x_{k} and w_{k} so that the integral and the sum are equal for a given n degree polynomial $p(x)$, by forcing both sides equal for each power of x^{j} for $j=0,1,2,, n$. What is the degree of the polynomial we need to use if we want 3 points? Find them for $[a, b]=[-1,1]$ and use it to approximate $\int_{-1}^{1} e^{-\frac{x^{2}}{2}} d x$.

Quiz 14. Fit a Least Square Parabola to the data set $\{(2,1),(3,2),(4,3),(6,4)\}$ One method to find the maximum of a multivariate function $E(a, b, c)$ is called the Steepest Descent Method. Here we start at a given point $\left(a_{0}, b_{0}, c_{0}\right)$ and select the direction of the maximum slope at $\left(a_{0}, b_{0}, c_{0}\right)$. Then we follow that maximum slope direction till we get the maximum along that direction as a one variable function, say at $\left(a_{1}, b_{1}, c_{1}\right)$ and we repeat the process. Show that the maximum directions at $\left(a_{0}, b_{0}, c_{0}\right)$ and $\left(a_{1}, b_{1}, c_{1}\right)$ are perpendicular. The function to minimize for the given data set is $E(a, b, c)=30-428 a+1649 a^{2}-88 b+630 a b+65 b^{2}-20 c+130 a c+30 b c+4 c^{2}$ Write the first two steps of the Steepest Descend Method starting from ($0,0,0$).

Quiz 15. (MID Q2) An iterative method of finding solutions to a non-linear equation $f(x)=0$ is said to have a convergence of order p iff $\left|x_{k+1}-z\right| \leq r\left|x_{k}-z\right|^{p}$ where x_{k} is the kth iteration, z is the solution and r is a constant. Show that $p=1$ for the iterative (fixed point) method and $p=2$ for the Newtons method.
Quiz 16. (MID Q4) Find the value of x for which $\int_{0}^{x} \frac{1}{\sqrt{p i}} e^{-\frac{t^{2}}{2}} d t=0.2$ using the Newtons method. Note that the above integral cannot be evaluated in closed form but your CASIO calculator can integrate, $\int_{a}^{b} f(x) d x$ is input as $\int(f(x), a, b)$.
Quiz 17. (MID Q6) Let $T_{n}(x)=\sum_{k=1}^{n} \frac{(-x)^{k}}{k!}$ be the nth degree Taylor polynomial of e^{-x} at $x=0$ and $\lim _{x \rightarrow \infty} T_{n}(x)=e^{-x}$. Solve $x=T_{2}(x)$ and find an approximate solution to $x=e^{-x}$. Also find a nor which the difference in the solutions to $x=T_{n}(x)$ and $x=e^{-x}$ is less than 0.001. Assume that one real solution to $x=T_{n}(x)$ remain in $[0.5,0.6]$ for all $n \geq 2$.

