MA1032-Mid-15S2-20161107-Page 1 of 6	Field: CS
Name:	Index Number:

Q1. An iterative method of finding solutions to a non-linear equation $f(x)=0$ is said to have a convergence of order p iff $\left|x_{k+1}-z\right| \leq r\left|x_{k}-z\right|^{p}$ where x_{k} is the k th iteration, z is the solution and r is a constant. Show that $p=1$ for the iterative (fixed point) method.

MA1032-Mid-15S2-20161107-Page 2 of 6	Field: CS
Name:	Index Number:

Q2. With the same information as in Q1, show that $p=2$ for the Newton's method.

MA1032-Mid-15S2-20161107-Page 3 of 6	Field: CS
Name:	Index Number:

Q3. Suppose we want to find the value of x for which $\int_{a}^{x} f(t) d t=c$ where f is a given continuous function and a and c are constants. Write the iterative formula that can be used to find x using the Newton's method.

MA1032-Mid-15S2-20161107-Page 4 of 6	Field: CS
Name:	Index Number:

Q4. Find the value of x for which $\int_{0}^{x} \frac{1}{\sqrt{\pi}} e^{-\frac{t^{2}}{2}} d t=0.2$ using the Newton's method. Note that the above integral cannot be evaluated in closed form but your CASIO calculator can integrate, $\int_{a}^{b} f(x) d x$ is input as $\int(f(x), a, b)$.

MA1032-Mid-15S2-20161107-Page 5 of 6	Field: CS
Name:	Index Number:

Q5. Using the iterative (fixed point) method on the interval $[a, b]=[0.5,0.6]$ with $x_{0}=0.5$, find a number of iterations sufficient to find the real solution of $x=e^{-x}$ accurate to 0.001 .
Also show the first 3 iterations and the solution to that accuracy.

MA1032-Mid-15S2-20161107-Page 6 of 6	Field: CS
Name:	Index Number:

Q6. Let $T_{n}(x)=\sum_{k=0}^{n} \frac{(-x)^{k}}{k!}$ be nth degree Taylor polynomial of e^{-x} at $x=0$ and $\lim _{n \rightarrow \infty} T_{n}(x)=e^{-x}$. Solve $x=T_{2}(x)$ and find an approximate solution to $x=e^{-x}$.
Also find a n for which the difference in the solutions to $x=T_{n}(x)$ and $x=e^{-x}$ is less than 0.001 .
Assume that one real solution to $x=T_{n}(x)$ remain in $[0.5,1]$ for all $n \geq 2$.

