Q1. Derive a formula for approximating $\int_{a}^{b} f(x) d x$ by approximating $f(x)$ on each interval by a line joining $\left(x_{k}, f\left(x_{k}\right)\right)$ and $\left(x_{k+1}, f\left(x_{k+1}\right)\right)$. Hence approximate $\int_{0}^{1} \sin \left(x^{2}\right) d x$.

Q2. Suppose we want to approximate $\int_{a}^{b} f(x) d x$. We divide $[a, b]$ into even number of intervals. Then on each interval with 3 points, we find a quadratic polynomial that passes through the function values and integrate that polynomial. Derive a formula for the above Simpson's method and approximate $\int_{0}^{1} \sin \left(x^{2}\right) d x$.

Q3. Let $f, g \in \mathcal{C}[a, b]$ and g does not change sign on $[a, b]$. Show that $\exists c \in(a, b)$ such that $\int_{a}^{b} f(x) g(x) d x=$ $f(c) \int_{a}^{b} g(x) d x$.

Q4. Find e up to and error of 0.01 . Show that e is irrational.
Q5. Find and error formula for the Trapezoidal rule and approximate $\int_{0}^{1} \sin \left(x^{2}\right) d x$ to an accuracy of 0.01.

Q6. Find the Lagrange Polynomial passing through the points $(1,1),(3,2),(4,3),(6,8)$.
Also find the maximum error if $f(x)=\frac{1}{\sqrt{5}}\left(\phi^{x}-(-\varphi)^{x} \cos \pi x\right)$. Here $\phi>0$ (Golden Ratio) and $\varphi<0$ are the roots of the equation $z^{2}-z-1=0$.

Q7. Find the time period T of a pendulum of length ℓ which is oscillating at an angle α if the acceleration due to gravity is g. Use the Taylor series approximation of $\frac{1}{\sqrt{1-x}}$ to write the answer as an infinite series.
What happens when $\alpha \rightarrow 0$?

Q8. Derive an error formula for the Simpson's rule $\int_{x_{0}}^{x_{2}} f(x) d x \approx \frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right)$ using Taylor series. What is the error is $f(x)$ is a cubic polynomial?.

Q9(20151028). Show that the Gamma function given by $\Gamma(x)=\int_{0^{+}}^{\infty} e^{-t} t^{x-1} d t$ exists if and only if $x>0$.

Q10(20151111).
Prove that $f \in \mathcal{R}[a, b] \Rightarrow|f| \in \mathcal{R}[a, b]$.
Let $f \in \mathcal{R}[a, b]$ for all $b>a$. Consider the integral of $f(x)-|f(x)|$ and show that if $\int_{a}^{\infty}|f(x)| d x$ is converging then $\int_{a}^{\infty} f(x) d x$ is converging.
Deduce that the integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$ is converging.

Q11. Find the roots of $x^{3}+7 x^{2}+16 x-1=0$ analytically or using the Bisection method.

Q12. Write a code for the Bisection method in any programming language of your choice.
Write the Taylor series of f at x_{n}. Assume that $f\left(x_{n}+h\right) \approx 0$ and derive a method to find roots of $f(x)=0$. Use the above Newton's method to solve $x^{3}+7 x^{2}+16 x-1=0$.

Q13. Use the Fixed Point method to find the real root of $2 x=\cos x$ accurate to 0.001 .
Compare with the fixed point method and find a condition for convergence of the Newton's method. What is the rate of convergence?.

Q14. Use Taylor series of two variables to find sufficient conditions for $f \in \mathcal{C}^{2}$ to have a local minimum/maximum/saddle point at (a, b).
Find them for the function $f(x, y)=x^{3}-12 x+y^{3}-27 y+5$

P1. Consider fitting of data $\left(x_{n}, y_{n}\right): n=1,2, \cdots, m$ by a least Square Line $a x+b$. We do this by minimizing the sum of square error $f(a, b)=\sum_{n=1}^{m}\left(y_{n}-a x_{n}-b\right)^{2}$ as a function of (a, b).
Find the critical points of f and confirm that it is corresponding to a global minimum.

Find the least square line for the following data.

x_{n}	1	2	3	4
y_{n}	1	3	2	4

P2: Consider the numerical minimization of the function $f(a, b)$ using the Steepest Descend Method. Here we start at a point $\left(a_{0}, b_{0}\right)$ and follow the direction of the minimum slope of f at (a_{0}, b_{0}) until we get the minimum of f at $\left(a_{1}, b_{1}\right)$ along this selected direction. Then we repeat the process at $\left(a_{1}, b_{1}\right)$ and so on. Show that such consecutive minimum slope directions are perpendicular.

The function for P1 is $f(a, b)=30-58 a+30 a^{2}-20 b+20 a b+4 b^{2}$. Write the first two steps of the Steepest Descend Method starting from $(0,0)$.

P3. Use the Taylor series expansion for two variable functions and derive a formula to find a root of a set of simultaneous non-linear equations

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

Use matrices and compare the formula with the one variable Newton's method.
Use the above method to find the complex roots of $z^{3}+7 z^{2}+16 z-1=0$.

P4. It is known that the function $f=f(x)$ minimizing the integral $I(f)=\int_{a}^{b} L\left(x, f, f^{\prime}\right) d x$ satisfies $\frac{\partial L}{\partial f}-\frac{d}{d x}\left(\frac{\partial L}{\partial f^{\prime}}\right)=0$. Here $L\left(x, f, f^{\prime}\right)$ is any \mathcal{C}^{1} function of x, f, f^{\prime}.
Show that the shortest length between two points is the straight line joining those two points.
Note: Length of a curve described by $f=f(x)$ from $x=a$ to $x=b$ is given by $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.

P5. If $f, g \in \mathcal{C}^{1}$ and $\nabla g \neq \mathbf{0}$ then show that the maxima/minima of $f(x, y)$ subjected to $g(x, y)=0$ are included in the set of solutions of $\nabla f(x, y)=\lambda \nabla g(x, y)$ and $g(x, y)=0$ (Lagrange Multipliers).
Find the absolute maximum/minimum of $f(x, y)=x^{4}+y^{4}-x^{2}-y^{2}+1$ on the closed disk $(x-1)^{2}+y^{2} \leq 4$.

M1. Use the error formula for the Simpson's rule to find the number of divisions needed to find the value of $\int_{0}^{1} \sin \left(u^{2}\right) d u$ accurate to 0.001 .

M2. Find the above integral to the given accuracy.

M3. Let $f \in \mathcal{R}[a, b]$ for all $b>a$ and assume that this implies $|f| \in \mathcal{R}[a, b]$ for all $b>a$. Consider the integral of $|f(x)|-f(x)$ and show that if $\int_{a}^{\infty}|f(x)| d x$ is converging then $\int_{a}^{\infty} f(x) d x$ is converging.

M4. Deduce that the integral $\int_{1}^{\infty} \frac{\sin x}{\sqrt{x}} d x$ is converging.
M5. Assume that x and y coordinates of a moving particle is given by $x=x(t)=\int_{0}^{t} \cos \left(u^{2}\right) d u$ and $y=y(t)=\int_{0}^{t} \sin \left(u^{2}\right) d u$ where t is time. Show that as $t \rightarrow \infty$ the length of the path is infinite.
Note: Length of a curve $(x(t), y(t))$ from $t=a$ to $t=b$ is given by $\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$.

M6. Show that the (x, y) coordinates of the particle remains finite. Use the results of M4.

