RIEMANN INTEGRAL

Example: Use n equal partitions of $[0,1]$ to estimate the "area" under the curve $f(x)=x^{2}$ using

1. left corner of the intervals
2. right corner of the intervals
3. midpoint of the interval
4. line joining the left and right corners of the interval

Definitions:

P is a partition of $[a, b]$ iff it is a ordered set of the form $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ with $x_{0}=a, x_{n}=b$ and $x_{k+1}>x_{k}$
P^{*} is a refinement of P iff $P^{*} \supseteq P$
P is a common refinement of P_{1}, P_{2} iff $P=P_{1} \cup P_{2}$
$\mathcal{P}[a, b]$ is the set of all partitions of $[a, b]$
Definition: Upper and Lower Riemann Sums $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function, $\Delta x_{k}=x_{k+1}-x_{k}$
$U(P, f)=\sum_{k=0}^{n-1} M_{k} \Delta x_{k}$ where $M_{k}=\sup \left\{f(x) \mid x \in\left[x_{k}, x_{k+1}\right]\right\}$
$L(P, f)=\sum_{k=0}^{n-1} m_{k} \Delta x_{k}$ where $m_{k}=\inf \left\{f(x) \mid x \in\left[x_{k}, x_{k+1}\right]\right\}$
Definition: Upper and Lower Riemann Integrals
$\overline{\int_{a}^{b} f(x) d x}=\inf \{U(P, f) \mid P \in \mathcal{P}[a, b]\}$
$\underline{\int_{a}^{b} f(x) d x}=\sup \{L(P, f) \mid P \in \mathcal{P}[a, b]\}$

Definition:

f is Riemann Integrable on $[a, b]$ or $f \in \mathfrak{R}[a, b]$ iff $\int_{a}^{b} f(x) d x=\overline{\int_{a}^{b} f(x) d x}$
Riemann Integral of f is the common value denoted by $\int_{a}^{b} f(x) d x$
Theorem: P^{*} is a refinement of P

1. $L(P, f) \leq L\left(P^{*}, f\right)$
2. $U\left(P^{*}, f\right) \leq U(P, f)$

Theorem: $\underline{\int_{a}^{b} f(x) d x} \leq \overline{\int_{a}^{b} f(x) d x}$
Theorem: $f \in \mathcal{R}[a, b]$ iff $\forall \varepsilon>0 \exists P \in \mathcal{P}[a, b] ; U(P, f)-L(P, f)<\varepsilon$
Theorem: If $f \in \mathcal{R}[a, b]$ and $P \in \mathcal{P}[a, b]$ such that $t_{i} \in\left[x_{i-1}, x_{i}\right]$ then
$\left|\sum_{i=1}^{n} f\left(t_{i}\right) \Delta x_{i}-\int_{a}^{b} f(x) d x\right|<U(P, f)-L(P, f)$
Theorem: $f \in \mathcal{C}[a, b] \Rightarrow f \in \mathcal{R}[a, b]$
Theorems: $f, g \in \mathcal{R}[a, b]$

1. $f+g \in \mathcal{R}[a, b]$ and $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
2. $f g \in \mathcal{R}[a, b]$
3. $|f| \in \mathcal{R}[a, b]$ and $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$
4. $f \leq g \Rightarrow \int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$
5. $f \leq M \Rightarrow \int_{a}^{b} f(x) d x \leq M(b-a)$
6. $\quad c \in[a, b] \Rightarrow f \in \mathcal{R}[a, c], f \in \mathcal{R}[c, b]$ and $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

Definition: $f(x)$ is Uniformly continuous on $I \subset \mathbb{R}$
$\forall \varepsilon>0, \exists \delta>0, \forall x_{1}, x_{2} \in I ;\left|x_{1}-x_{2}\right|<\delta \Longrightarrow\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon$

Definition: $f(x)$ is Lipschitz continuous on $I \subset \mathbb{R}$
$\exists L>0, \forall x_{1}, x_{2} \in I ;\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|$

Theorem: Lipschitz continuous \Rightarrow Uniformly continuous \Rightarrow Continuous

Example: Show that $\frac{1}{x}$ is not uniformly continuous on $(0,1]$ but x^{2} is.

Theorem: Fundamental Theorem of Calculus

If $f \in \mathcal{R}[a, b]$ and there is a differentiable function F such that $F^{\prime}=f$ then $\int_{a}^{b} f(x) d x=F(b)-F(a)$

Theorem: Second Fundamental Theorem of Calculus

If $f \in \mathcal{R}[a, b]$ and $x \in[a, b]$ and $F(x)=\int_{a}^{x} f(x) d x$ then

1. F is continuous on $[a, b]$.
2. If f is continuous at a point $x_{0} \in[a, b]$ then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

Theorem: Integration by Parts

F, G differentiable on $[a, b], F^{\prime}=f \in \mathcal{R}[a, b]$ and $G^{\prime}=f \in \mathcal{R}[a, b]$ then
$\int_{a}^{b} F(x) g(x) d x=F(b) G(b)-F(a) G(a)-\int_{a}^{b} f(x) G(x) d x$

Theorem: Change of Variable

g has continuous derivative g^{\prime} on $[c, d] . f$ is continous on $g([c, d])$ and let $F(x)=\int_{g(c)}^{x} f(t) d t, x \in g([c, d])$. Then for each $x \in[c, d], \int_{c}^{x} f(g(t)) g^{\prime}(t) d t$ exixts and has value $F(g(x))$.

Theorem: Mean Value Theorem for Integrals

$f \in \mathcal{R}[a, b]$ with $m \leq f \leq M$. Then $\exists c \in[m, M]$ such that $\int_{a}^{b} f(x) d x=c(b-a)$.
If also $f \in \mathcal{C}[a, b]$ then $\exists x_{0} \in(a, b)$ such that $\int_{a}^{b} f(x) d x=f\left(x_{0}\right)(b-a)$.

Definition: Improper Integrals of the first kind

Suppose $\int_{a}^{b} f(x) d x$ exixts for each $b \geq a$.
If $\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$ exists and equal to $I \in \mathbb{R}$ we say that $\int_{a}^{\infty} f(x) d x$ converges and has value I
Otherwise we say that $\int_{a}^{\infty} f(x) d x$ diverges

Definition: Improper Integrals

$\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x, f:[a, \infty) \rightarrow \mathbb{R}$
$\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x, f:(-\infty, b] \rightarrow \mathbb{R}$
$\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x, f:(-\infty, \infty) \rightarrow \mathbb{R}, c \in \mathbb{R}$
$\int_{a^{+}}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x, f:(a, b] \rightarrow \mathbb{R}$
$\int_{a}^{b^{-}} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x, f:[a, b) \rightarrow \mathbb{R}$
$\int_{a}^{b} f(x) d x=\int_{a}^{c^{-}} f(x) d x+\int_{c^{+}}^{b} f(x) d x, f:[a, c) \cup(c, b] \rightarrow \mathbb{R}, c \in(a, b)$
Example: Find $\int_{-1}^{1} \frac{1}{x^{2}} d x$ if it exists

Example:

Prove that if f is bounded above and increasing, then $\lim _{x \rightarrow \infty} f(x)$ is existing and finite
Prove that $\int_{a}^{\infty}|f(x)| d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges
Prove that if $|f(x)| \leq M e^{a x}$, then the Laplace Transform of $f(x), \bar{f}(s)=\int_{0}^{\infty} e^{-s x} f(x) d x$ exists for all $s>a$.

Theorem: Comparison Test

Assume that the proper integral $\int_{a}^{b} f(x) d x$ exists for each $b \geq a$ and suppose that $0 \leq f(x) \leq g(x)$
for all $x \geq a$, then $\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges

Theorem: Limit Comparison Test

Assume both proper integrals $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$ exist for each $b \geq a$, where $f(x) \geq 0$ and $g(x)>0$ If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=c$, then

1. $\quad \mathrm{c} \neq 0, \infty \Rightarrow \int_{a}^{\infty} f(x) d x$ converges $\Leftrightarrow \int_{a}^{\infty} g(x) d x$ converges
2. $\mathrm{c}=0$ and $\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges
3. $\mathrm{c}=\infty$ and $\int_{a}^{\infty} g(x) d x$ diverges $\Rightarrow \int_{a}^{\infty} f(x) d x$ diverges

Note: There are similar comparison tests for other improper integrals
Example: Gamma Function is defined by $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t$. Show that

1. $\Gamma(x)$ exists for all $x>0$
2. $\Gamma(x)=(x-1) \Gamma(x-1)$
3. $\Gamma(n)=(n-1)$! for integer $n \geq 1$
4. we can use 2. to define $\Gamma(x)$ for $x<0$
5. $\Gamma(x)$ does not exist for $x=0,-1,-2,-3, \ldots$.
6. Show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ and $\int_{0}^{\infty} e^{-t^{2}} d t=\sqrt{\pi}$ using $\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x}$
7. Use the formula for the the n dimesional ball $V_{n}(r)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} r^{n}$ to find volumes of $2,3,4,5$ dimesional balls
8. Use the fact that $\Gamma(x+1) \sim \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}$ asmptotically as $t \rightarrow \infty$ to find 10 ! approximately
9. What is $-\Gamma^{\prime}(1)$?. It is called the Euler Constant γ and no one knows if it is rational or irrational! Prove that the Beta function $B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t$ exists for all $x, y>0$. It can be shown that $B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$.

MULTIVARIATE CALCULUS

Definition: Function of two variables $f: A \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$

Example: Draw the graphs of the following functions/surfaces

1. $f(x, y)=x^{2}+y^{2}$
2. $f(x, y)=\sqrt{x^{2}+y^{2}}$
3. $\frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=1$

Definition: Limit

$\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L \Leftrightarrow \forall \varepsilon>0 \exists \delta>0,0<d((x, y),(a, b))<\delta \Rightarrow|f(x, y)-L|<\varepsilon$

Note: Matric

$0<d((x, y),(a, b))<\delta$ is a region around and excluding (a, b). Some options for the matric d are

1. $\sqrt{(x-a)^{2}+(y-b)^{2}}$
2. $|x-a|+|y-b|$
3. $\max \{|x-a|,|y-b|\}$

We will use the first matric. One can show that they are equivalent, what is needed is a region around (a, b).
Example: Use the definition to show that $\lim _{(x, y) \rightarrow(1,2)} x^{2} y=6$
Example: Investigate the existence of the $\operatorname{limit}, \lim _{(x, y) \rightarrow(0,0)} f(x, y)$ for the following functions

1. $f(x, y)=\left\{\begin{array}{cll}\frac{x y}{x^{2}+y^{2}} & , & (x, y) \neq(0,0) \\ 0 & , & (x, y)=(0,0)\end{array}\right.$
2. $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} & (x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{array}\right.$
3. $f(x, y)=\left\{\begin{array}{cl}x \sin \frac{1}{y} & , \quad(x, y) \neq(0,0) \\ 0 & , \quad(x, y)=(0,0)\end{array}\right.$

Theorem:

If $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L, \lim _{x \rightarrow a} f(x, y)$ and $\lim _{y \rightarrow b} f(x, y)$ exists then
$\lim _{x \rightarrow a} \lim _{\mathrm{y} \rightarrow b} f(x, y)=\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)=L$.

Example:

Use the above theorem to prove that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ is not existing for $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & ,(x, y) \neq(0,0) \\ 0 & , \quad(x, y)=(0,0)\end{array}\right.$. Prove by definition that if $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ along $y=x$ and $y=2 x$ are different, then the limit is not existing.

Definition: Continuity of $f(f \in \mathcal{C})$ at (a, b)
$\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$

Definition: Partial derivatives

$$
\begin{aligned}
& f_{x}(a, b)=f_{1}(a, b)=\frac{\partial f}{\partial x}(a, b)=\lim _{x \rightarrow a} \frac{f(x, b)-f(a, b)}{x-a}=\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x, b)-f(a, b)}{\Delta x} \\
& f_{y}(a, b)=f_{2}(a, b)=\frac{\partial f}{\partial y}(a, b)=\lim _{y \rightarrow b} \frac{f(a, y)-f(a, b)}{y-b}=\lim _{\Delta y \rightarrow 0} \frac{f(a, b+\Delta y)-f(a, b)}{\Delta y}
\end{aligned}
$$

Definition: $f \in \mathcal{C}^{1} \Leftrightarrow f_{x} \in \mathcal{C}$ and $f_{y} \in \mathcal{C}$

Theorem: Mean Value

1. f_{x} and f_{y} exists
2. $\mathbb{D}=\left\{(x, y) \mid(x-a)^{2}+(y-b)^{2}<\delta^{2}\right\} \subset A$
3. $\Delta x^{2}+\Delta y^{2}<\delta^{2}$

Then

1. $f(a+\Delta x, b+\Delta y)-f(a, b)=\Delta x f_{x}(a+\theta \Delta x, b)+\Delta y f_{y}(a+\Delta x, b+\alpha \Delta y)$
2. $0<\theta, \alpha<1$

Definition: Differentiability of $f(f \in \mathcal{D})$ at (a, b)

1. f_{x} and f_{y} exists at (a, b)
2. $f(a+\Delta x, b+\Delta y)-f(a, b)=\Delta x f_{x}(a, b)+\Delta y f_{y}(a, b)+\Delta x \phi(\Delta x, \Delta y)+\Delta y \psi(\Delta x, \Delta y)$ for all $\Delta x^{2}+\Delta y^{2}<\delta^{2}$
3. $\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \phi(\Delta x, \Delta y)=\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \psi(\Delta x, \Delta y)=0$

Theorem: $f \in \mathcal{C}^{1} \Rightarrow f \in \mathcal{D} \Rightarrow f \in \mathcal{C}$
Example: Let $f(x, y)=g\left(\sqrt{x^{2}+y^{2}}\right), g(x)=x \sin \frac{1}{x}, g(0)=0$. Show that $f \in \mathcal{D}$ but $f \notin \mathcal{C}^{1}$
Definition: Higher order derivatives
$f_{x x}=\left(f_{x}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}$
$f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}$
$f_{y x}=\left(f_{y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}$
$f_{y y}=\left(f_{y}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}$ and so on

Note:

1. We write $f \in \mathcal{C}^{2}$ to mean $f_{x x}, f_{x y}, f_{y x}, f_{y y} \in \mathcal{C}$
2. In a similar manner we write $f \in \mathcal{C}^{n}$ to mean that all the nth order partial derivatives are continuous. There are 2^{n} of them.
3. There are $\binom{n}{m}={ }^{n} C_{m}=\frac{n!}{m!(n-m)!}, n$th order partial derivatives that contains x, m times.

Example: Let
$f(x, y)=\left\{\begin{array}{cc}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & , \\ 0, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$.
Show that $f_{x y}(0,0) \neq f_{y x}(0,0)$.
Theorem: $f \in \mathcal{C}^{2} \Rightarrow f_{x y}=f_{y x}$
Example: If $u=u(x, y) \in \mathcal{C}^{2}$ then prove that the Laplace operator $\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$ becomes $\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}$ when $x=r \cos \theta, y=r \sin \theta$.

Theorem: Chain rule

1. $f=f(x, y), y=y(t), x=x(t)$ all in \mathcal{C}^{1}. Then $\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$
2. $f=f(x, y), y=y(u, v), x=x(u, v)$ all in \mathcal{C}^{1}. Then $\frac{\partial f}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$ and $\frac{\partial f}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$

Note: The above may be written as

$$
\frac{\partial f}{\partial t}=\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right)\binom{\frac{d x}{d t}}{\frac{d y}{d t}}=\frac{\partial f}{\partial(x, y)} \frac{\partial(x, y)}{\partial t} \text { and } \frac{\partial f}{\partial(u, v)}=\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right)\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\frac{\partial f}{\partial(x, y)} \frac{\partial(x, y)}{\partial(u, v)}
$$

The determinant, $\operatorname{det} \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right|$ is called the Jacobian or J
With $\underline{x}=\binom{x}{y}$ and $\underline{u}=\binom{u}{v}$, the above may also be written as

$$
(f \circ \underline{x})^{\prime}(t)=\left(f^{\prime} \circ \underline{x}\right)(t) \underline{x}^{\prime}(t) \text { and }(f \circ \underline{x})^{\prime}(\underline{u})=\left(f^{\prime} \circ \underline{x}\right)(\underline{u}) \underline{x}^{\prime}(\underline{u})
$$

We also see that $\left(\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right)=\frac{\partial f}{\partial(x, y)}=f^{\prime}(\underline{x})$ is acting as the true first derivative of $f=f(x, y)$. Therefore it is also called $\nabla f=\operatorname{grad} f$ or the Gradient of f.

Example: Assume all functions are \mathcal{C}^{1}
Show that if $x=x(u, v), y=y(u, v), u=u(r, s), v=v(r, s)$ then $\frac{\partial(x, y)}{\partial(r, s)}=\frac{\partial(x, y)}{\partial(u, v)} \frac{\partial(u, v)}{\partial(r, s)}$.
Show that if $u=f(x, y), v=g(x, y)$ then a functional relation of the form $h(u, v)=0$ exists iff det $\frac{\partial(u, v)}{\partial(x, y)} \equiv 0$.
Definition: Directional Derivative of f in the direction of the unit vector $\underline{u}=(u, v)$ at (a, b).
$D_{\underline{u}} f(a, b)=\lim _{\Delta t \rightarrow 0} \frac{f(a+u \Delta t, b+v \Delta t)-f(a, b)}{\Delta t}$
Theorem: $f \in \mathcal{C}^{1}, \nabla f(a, b) \neq \underline{0}$

1. $\quad D_{\underline{u}} f(a, b)=\frac{\partial f}{\partial x}(a, b) u+\frac{\partial f}{\partial y}(a, b) v=\nabla f(a, b) \cdot \underline{u}$
2. $\max _{\underline{u}} D_{\underline{u}} f(a, b)=D_{\nabla \overline{f(a, b)}} f(a, b)=\|\nabla f(a, b)\|$
3. $\min _{\underline{u}} D_{\underline{u}} f(a, b)=D_{-\nabla \widehat{f(a, b)}} f(a, b)=-\|\nabla f(a, b)\|$

Theorem: Normal vector to a surface at (a, b)
$\underline{n}(a, b)=\left(f_{x}(a, b), f_{x}(a, b),-1\right)=(\nabla f(a, b),-1)$

Proof: Let $\underline{r}=\underline{r}(t)=(x(t), y(t), z(t)) \in \mathcal{C}^{1}$ be a curve on the surface of $z=f(x, y) \in \mathcal{C}^{1}$
and $\underline{r}\left(t_{0}\right)=\left(x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right)=(a, b, f(a, b))$.
Note that $\underline{r}^{\prime}\left(t_{0}\right)=\left(x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)\right)$ is the tangent vector to the curve at (a, b).
Now $\underline{n}(a, b) \cdot \underline{r}^{\prime}\left(t_{0}\right)=f_{x}(a, b) x^{\prime}\left(t_{0}\right)+f_{y}(a, b) y^{\prime}\left(t_{0}\right)-z^{\prime}\left(t_{0}\right)=\frac{d f}{d t}\left(t_{0}\right)-z^{\prime}\left(t_{0}\right)=0$
le $\underline{n}(a, b)=\left(f_{x}(a, b), f_{y}(a, b),-1\right)=(\nabla f(a, b),-1)$ is a vector perpendicular to the surface $z=f(x, y)$ at (a, b).
Theorem: Equation of the tangent plane to the surface $z=f(x, y) \in \mathcal{C}^{1}$ at (a, b).
$z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)=\nabla f(a, b)\binom{x-a}{y-b}=\nabla f(a, b)\left(\binom{x}{y}-\binom{a}{b}\right)$
Example: Let $f(x, y)=x^{4}+y^{4}-x^{2}-y^{2}+1$. At the point $(1,2)$ find

1. Direction in which the function increases most rapidly
2. Directional derivative in that direction
3. Equation of the tangent plane.

Theorem: Taylor's expansion for one variable $f: I \in \mathbb{R} \rightarrow \mathbb{R}$
If $f \in C^{n+1}$ and $a, a+h \in I$
then $f(a+h)=\sum_{m=0}^{n} \frac{1}{k!} \frac{d^{m} f}{d x^{m}}(a) h^{m}+\frac{1}{(n+1)!} \frac{d^{n+1} f}{d x^{n+1}}(c) h^{n+1}$
where c is between a and $a+h$.
Note: We can also write the above as
If $f \in \mathcal{C}^{n+1}$ and $a+t h \in I$ for all $t \in[0,1]$
Then $f(a+h)=\sum_{m=0}^{n} \frac{1}{k!}\left(h \frac{d}{d x}\right)^{m} f(a)+\frac{1}{(n+1)!}\left(h \frac{d}{d x}\right)^{n+1} f(c)$
for some $c=a+\theta h$ with $\theta \in(0,1)$.
We agree to use the notation $\left(h \frac{d}{d x}\right)^{m} f(a) \equiv h^{m} \frac{d^{m} f}{d x^{m}}(a)$
Note: The first two terms are the equation of the tangent line.

Proof: Use generalized mean value theorem on
$F(t)=\sum_{m=0}^{n} \frac{1}{m!} f^{(m)}(t)(x-t)^{m}$ and $G(t)=(x-t)^{n+1}$
Example: When $n=1$
$f(a+h)=f(a)+\frac{1}{1!} f^{\prime}(a) h+\frac{1}{2!} f^{\prime \prime}(c) h^{2}$
Example: Write the Taylor's expansion for $f(x)=e^{x}$ at $a=0$.
Example: Derive the second derivative test to find the extrema of $f(x)$. What to do when $f^{\prime \prime}(a)=0$?

Theorem: Taylor's for two variables $f: A \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$
$f \in \mathcal{C}^{n+1}$ and $(a+t h, b+t k) \in A$ for all $t \in[0,1]$
Then $f(a+h, b+k)=\sum_{m=0}^{n} \frac{1}{k!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{m} f(a, b)+\frac{1}{(m+1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{m+1} f(\boldsymbol{c})$
for some $\boldsymbol{c}=(a+\theta h, b+\theta k)$ with $\theta \in(0,1)$.
Proof: Use Taylor'r expansion for $F(t)=f(a+t h, b+t k)$
Example: When $n=1$
$f(a+h, b+k)$
$=\sum_{m=0}^{1} \frac{1}{k!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{m} f(a, b)+\frac{1}{(1+1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{1+1} f(a+\theta h, b+\theta k)$
$=f(a, b)+\frac{1}{1!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f(a, b)+\frac{1}{2!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f(\boldsymbol{c})$
$=f(a, b)+\frac{1}{1!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f(a, b)+\frac{1}{2!}\left(h^{2} \frac{\partial^{2}}{\partial x^{2}}+2 h k \frac{\partial^{2}}{\partial x \partial y}+h^{2} \frac{\partial^{2}}{\partial y^{2}}\right) f(\boldsymbol{c})$
$=f(a, b)+f_{x}(a, b) h+f_{y}(a, b) k+\frac{1}{2!}\left(f_{x x}(\boldsymbol{c}) h^{2}+2 f_{x y}(\boldsymbol{c}) h k+f_{y y}(\boldsymbol{c}) k^{2}\right)$
$=f(a, b)+\left(\begin{array}{ll}f_{x}(a, b) & f_{y}(a, b)\end{array}\right)\binom{h}{k}+\frac{1}{2!}\left(\begin{array}{ll}h & k\end{array}\right)\left(\begin{array}{ll}f_{x x}(\boldsymbol{c}) & f_{x y}(\boldsymbol{c}) \\ f_{y x}(\boldsymbol{c}) & f_{y y}(\boldsymbol{c})\end{array}\right)\binom{h}{k}$
$=f(a, b)+\nabla f(a, b)\binom{h}{k}+\frac{1}{2!}\left(\begin{array}{ll}h & k\end{array}\right) H f(c)\binom{h}{k}$
$=f(a, b)+\frac{1}{1!} f^{\prime}(a, b)\binom{h}{k}+\frac{1}{2!}\left(\begin{array}{ll}h & k\end{array}\right) f^{\prime \prime}(\boldsymbol{c})\binom{h}{k}$
Note: The first two terms are the equation of the tangent plane.

Definition: $f^{\prime \prime}=H f=\left(\begin{array}{ll}f_{x x} & f_{x y} \\ f_{y x} & f_{y y}\end{array}\right)$: Hessian of f
$\operatorname{det} H f=f_{x x} f_{y y}-f_{x y}{ }^{2}$: determinant
$\operatorname{tr} H f=f_{x x}+f_{y y}:$ trace
Note: $\operatorname{det} H f>0$ and $f_{x x}>0(<0) \Longrightarrow f_{y y}>0(<0) \Longrightarrow \operatorname{tr} H f>0(<0)$

Example:

Write the Taylor's expansion for $f(x, y)=e^{x y}$ and $f(x, y)=\sin \left(\sin x+x e^{y}\right)$ at $(a, b)=(0,0)$. Get the same answer by applying multiple one variable Taylor series expansions at 0 .

Definition: (a, b) is a critical point of $f \in \mathcal{C}^{1} \Leftrightarrow \nabla f(a, b)=\mathbf{0}$ or f is not defined

Definition:

1. f has a relative maximum at $(a, b) \Leftrightarrow f(a, b) \geq f(a+h, b+k)$ in a neighbourhood of (a, b)
2. f has a relative minimum at $(a, b) \Leftrightarrow f(a, b) \leq f(a+h, b+k)$ in a neighbourhood of (a, b)
3. f has a saddle point at $(a, b) \Leftrightarrow f$ is both above and below its tangent plane at (a, b).

Theorem: $f \in C^{1}$ and (a, b) is a relative maximum/minimum/saddle point of $f \Rightarrow \nabla f(a, b)=\mathbf{0}$
Theorem: $f \in C^{2}$ and $\nabla f(a, b)=\mathbf{0}$ then

1. $\operatorname{det} H f(a, b)>0$ and $\operatorname{tr} H f(a, b)>0$ then (a, b) is a relative mimimum
2. $\operatorname{det} H f(a, b)>0$ and $\operatorname{tr} H f(a, b)<0$ then (a, b) is a relative maximum
3. $\operatorname{det} H f(a, b)<0$ then (a, b) is a saddle point
4. $\operatorname{det} H f(a, b)=0$ inconclusive(why?)

Example: Find the critical points and determine the nature of them (relative maxima/minima/saddle points).
$f(x, y)=x^{3}-12 x+y^{3}-27 y+5$
$f(x, y)=x^{4}+y^{4}-x^{2}-y^{2}+1$
$f(x, y)=x^{4}+y^{4}$
Example: Propose a method to determine the nature of critical points when $\operatorname{det} H f=0$.

Theorem: Lagrange Multipliers

If $f, g \in \mathcal{C}^{1}$ and $\nabla g \neq \mathbf{0}$ then the maxima/minima of $f(x, y)$ subjected to $g(x, y)=0$ are included in the set of solutions of $\nabla f(x, y)=\lambda \nabla g(x, y)$ and $g(x, y)=0$.

Example:

Find the shortest distance from the point $(1,0)$ to the parabola $y^{2}=4 x$.
Find the directions of the axes of the ellipse $5 x^{2}-6 x y+5 y^{2}-4 x-4 y-4=0$.
Find the absolute maximum/minimum of $f(x, y)=x^{4}+y^{4}-x^{2}-y^{2}+1$ on the closed disk $(x-1)^{2}+y^{2} \leq 4$.

