Question 1

Assume that x and y coordinates of a moving particle is given by $x=x(t)=\int_{0}^{t} \cos \left(u^{2}\right) d u$ and $y=y(t)=\int_{0}^{t} \sin \left(u^{2}\right) d u$ where t is time. Show that as $t \rightarrow \infty$ the length of the path is infinite but the (x, y) coordinates of the particle remains finite (it is sufficient to show that one of the coordinates x or y remains finite).
Note: Length of a curve $(x(t), y(t))$ from $t=a$ to $t=b$ is given by $\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$.

Question 2

Derive an error formula for the Trapezoidal Rule and find $\int_{0}^{1} \sin \left(x^{2}\right) d x$ to an accuracy of 0.01 .

Question 3

Find the Lagrange Polynomial passing through the points $(1,1),(3,2),(4,3),(6,8)$.
Also find an upper bound for the error if the actual function is $f(x)=\frac{1}{\sqrt{5}}\left(\phi^{x}-(-\varphi)^{x} \cos \pi x\right)$.
Note: $\phi>0$ (Golden Ratio) and $\varphi<0$ are the roots of the equation $z^{2}-z-1=0$.

Question 4

Assume the convergence of the Fixed Point Method $x_{k+1}=g\left(x_{k}\right), k \geq 0$ for finding roots of $x=g(x)$. Show that we have $\left|x_{k}-x\right| \leq \frac{L^{k}}{1-L}\left|x_{1}-x_{0}\right|$, where L is the Lipschitz constant of g. Also use the above method to find the real root of $2 x=\cos x$ accurate to 0.001 .

Question 5

Use Taylor series of two variables to derive a sufficient conditions for $f \in \mathcal{C}^{2}$ to have a local minimum at (a, b). Also find the critical points and classify them (maximum/minimum/saddle point) for the function $f(x, y)=x^{3}-12 x+y^{3}-27 y+5$.
Note: Critical points are those points where ∇f is $\mathbf{0}$ or undefined.

Question 6

Use the Taylor series expansion for two variable functions to derive a formula to find a root of a set
of simultaneous non-linear equations

$$
\begin{aligned}
& f(x, y)=0 \\
& g(x, y)=0
\end{aligned}
$$

Use the above method to write two iterations to find a complex roots of $z^{3}+7 z^{2}+16 z-1=0$ starting from $1+i$.

