MA1023C-Mid-15S2-20161107-Page 5 of 6	Field:
Name:	Index Number:

C1. Using the iterative (fixed point) method on the interval $[a, b]=[0.5,0.6]$ with $x_{0}=0.5$, find a number of iterations sufficient to find the real solution of $x=e^{-x}$ accurate to 0.001 .
Also show the first 3 iterations and the solution to that accuracy.

MA1023C-Mid-15S2-20161107-Page 6 of 6	Field:
Name:	Index Number:

C2. Let $T_{n}(x)=\sum_{k=0}^{n} \frac{(-x)^{k}}{k!}$ be nth degree Taylor polynomial of e^{-x} at $x=0$ and $\lim _{n \rightarrow \infty} T_{n}(x)=e^{-x}$. Solve $x=T_{2}(x)$ and find an approximate solution to $x=e^{-x}$.
Also find a n for which the difference in the solutions to $x=T_{n}(x)$ and $x=e^{-x}$ is less than 0.001 .
Assume that one real solution to $x=T_{n}(x)$ remain in $[0.5,0.6]$ for all $n \geq 2$.

