MA1023C-Mid-15S2-20161107-Page 5 of 6	Field:
Name:	Index Number:

C1. Using the iterative (fixed point) method on the interval [a, b] = [0.5, 0.6] with $x_0 = 0.5$, find a number of iterations sufficient to find the real solution of $x = e^{-x}$ accurate to 0.001.

Also show the first 3 iterations and the solution to that accuracy.

MA1023C-Mid-15S2-20161107-Page 6 of 6	Field:
Name:	Index Number:

C2. Let $T_n(x) = \sum_{k=0}^n \frac{(-x)^k}{k!}$ be *n* th degree Taylor polynomial of e^{-x} at x = 0 and $\lim_{n\to\infty} T_n(x) = e^{-x}$. Solve $x = T_2(x)$ and find an approximate solution to $x = e^{-x}$. Also find a *n* for which the difference in the solutions to $x = T_n(x)$ and $x = e^{-x}$ is less than 0.001.

Assume that one real solution to $x = T_n(x)$ remain in [0.5,0.6] for all $n \ge 2$.