Theorem 1. Error formula for the Simpson's Rule If $f \in \mathcal{C}^{4}$, error in the Simpson's rule is $-\frac{(b-a)^{5}}{180 n^{4}} f^{(4)}(\eta)$ where $\eta \in(a, b)$
Proof. With usual notation, let $p(x)$ be the degree two Lagrange polynomial of $f(x)$ agreeing with it on three points x_{0}, x_{1}, x_{2} which are distance h apart.
Consider error on the first two intervals, $\int_{x_{0}}^{x_{2}}(f(x)-p(x)) d x$
We define a degree three polynomial as follows
$q(x)=p(x)+\frac{1}{h^{2}}\left(p^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{1}\right)\right) w(x)$ where $w(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)$
We notice that $q\left(x_{k}\right)=p\left(x_{k}\right)=f\left(x_{k}\right)$ for $k=0,1,2$ and $q^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)$
First we claim that $f(x)=q(x)+\frac{f^{(4)}\left(\zeta_{1}\right)}{4!} u(x)$ where $u(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)^{2}\left(x-x_{2}\right)$ and $\zeta_{1} \in\left(x_{0}, x_{2}\right)$. To prove this define $g(y)=f(y)-q(y)-u(y) \frac{f(x)-p(x)}{u(x)}$
Now $g(y)=0$ for $y=x_{0}, x_{1}, x_{2}, x$ and $g^{\prime}\left(x_{1}\right)=0$
This implies, by the Mean Value Theorem that there is $\zeta_{1} \in\left(x_{0}, x_{2}\right)$ such that $g^{(4)}\left(\zeta_{1}\right)=f^{(4)}\left(\zeta_{1}\right)-0-4!\frac{f(x)-p(x)}{u(x)}=0$ or $f(x)=q(x)+\frac{f^{(4)}\left(\zeta_{1}\right)}{4!} u(x)$ for some $\zeta_{1} \in\left(x_{0}, x_{2}\right)$ as desired.

Now we notice that
$\int_{x_{0}}^{x_{2}} w(x) d x$
$=\int_{x_{0}}^{x_{2}}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) d x$
$=\int_{-h}^{h}(t+h)(t)(t-h) d t=\int_{-h}^{h}\left(t^{3}-h^{2} t\right) d t=0$
This implies that
$\int_{x_{0}}^{x_{2}}(f(x)-p(x)) d x=\int_{x_{0}}^{x_{2}}(f(x)-q(x)) d x=\int_{x_{0}}^{x_{2}} \frac{f^{(4)}\left(\zeta_{1}\right)}{4!} u(x) d x=\frac{f^{(4)}\left(\eta_{1}\right)}{4!} \int_{x_{0}}^{x_{2}} u(x) d x$
since $u(x)$ does not change sign on $\left(x_{0}, x_{2}\right)$ and because $f^{(4)}\left(\eta_{1}(x)\right)$ is a continuous function.

Now
$\int_{x_{0}}^{x_{2}} u(x) d x$
$=\int_{x_{0}}^{x_{2}}\left(x-x_{0}\right)\left(x-x_{1}\right)^{2}\left(x-x_{2}\right) d x$
$=\int_{-h}^{h}(t+h)(t)^{2}(t-h) d t=\int_{-h}^{h}\left(t^{4}-h^{2} t^{2}\right) d t=\left[\frac{t^{5}}{5}-h^{2} \frac{t^{3}}{3}\right]_{-h}^{h}=2\left[\frac{h^{5}}{5}-\frac{h^{5}}{3}\right]=-\frac{4}{15} h^{5}$
So the error on $\left[x_{0}, x_{2}\right]$ is
$\frac{f^{(4)}\left(\eta_{1}\right)}{4!} \int_{x_{0}}^{x_{2}} u(x) d x=\frac{f^{(4)}\left(\eta_{1}\right)}{4!}\left(-\frac{4}{15} h^{5}\right)=-\frac{h^{5}}{90} f^{(4)}\left(\eta_{1}\right)$
We notice here that n needs to be even in order to cover $[a, b]$ by non-overlapping intervals similar to $\left[x_{0}, x_{2}\right]$ and we need $\frac{n}{2}$ of such intervals. Now adding error terms in each interval we have the total error,
$\sum_{j=1}^{\frac{n}{2}}-\frac{h^{5}}{90} f^{(4)}\left(\eta_{j}\right)=-\frac{h^{5}}{90} \sum_{j=1}^{\frac{n}{2}} f^{(4)}\left(\eta_{j}\right)=-\frac{h^{5}}{90} \frac{n}{2} f^{(4)}(\eta)=-\frac{n h^{5}}{180} f^{(4)}(\eta)$ for $\eta \in(a, b)$ using Extremum and Intermediate Value Theorems for $f \in \mathcal{C}^{4}$ ie. for $f^{(4)} \in \mathcal{C}$. Using $h=\frac{b-a}{n}$, the total error is also equal to $-\frac{(b-a) h^{4}}{180} f^{(4)}(\eta)=-\frac{(b-a)^{5}}{180 n^{4}} f^{(4)}(\eta)$

Theorem 2. Newton-Kantorovich Theorem

1. Let $f:[a, b] \rightarrow \mathbb{R}$
2. f^{\prime} is Lipschitz continuous with constant γ
3. $f^{\prime}(x) \neq 0$ and $\frac{1}{\left|f^{\prime}(x)\right|} \leq \beta$
4. $x_{0} \in[a, b]$ and $\left|\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right|=\alpha$
5. $q=\alpha \beta \gamma<\frac{1}{2}$
6. $\left[x_{0}-2 \alpha, x_{0}+2 \alpha\right] \subset[a, b]$
7. $x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}, k \geq 0$

Then

1. $\lim _{k \rightarrow \infty} x_{k}=z \in\left[x_{0}-2 \alpha, x_{0}+2 \alpha\right]$.
2. $f(z)=0$ and z is a unique root of f
3. $\left|x_{k}-z\right| \leq 2 \alpha q^{2^{k}-1}$

Proof. By definition we have, $\left.\left|x_{k+1}-x_{k}\right|=\left|\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}\right| \leq \beta\left|f\left(x_{k}\right)\right|=\beta \right\rvert\, f\left(x_{k}\right)-f\left(x_{k-1}\right)-$ $\left(x_{k}-x_{k-1}\right) f^{\prime}\left(x_{k-1}\right)|=\beta| \int_{x_{k-1}}^{x_{k}} f^{\prime}(t) d t-f^{\prime}\left(x_{k-1}\right) \int_{x_{k-1}}^{x_{k}} d t|\leq \beta| \int_{x_{k-1}}^{x_{k}}\left|f^{\prime}(t)-f^{\prime}\left(x_{k-1}\right)\right| d t \mid \leq$ $\beta \gamma\left|\int_{x_{k-1}}^{x_{k}}\right| t-x_{k-1}|d t|=\frac{1}{2} \beta \gamma\left|x_{k}-x_{k-1}\right|^{2}=p\left|x_{k}-x_{k-1}\right|^{2}$

Also by using the formula k times, $\left|x_{k+1}-x_{k}\right| \leq p\left|x_{k}-x_{k-1}\right|^{2} \leq p\left(p \mid x_{k-1}-\right.$ $\left.\left.x_{k-2}\right|^{2}\right)^{2}=p^{1+2^{1}}\left|x_{k-1}-x_{k-2}\right|^{2^{2}} \leq p^{1+2^{1}+2^{2}+\cdots+2^{k-1}}\left|x_{1}-x_{0}\right|^{2^{k}}=p^{\frac{2^{k}-1}{2-1}}\left|x_{1}-x_{0}\right|^{2^{k}}=$ $\frac{1}{p}(p \alpha)^{2^{k}}=\frac{\alpha}{\alpha \beta \gamma}(\alpha \beta \gamma)^{2^{k}}=\alpha q^{2^{k}-1}$

So we have $\left|x_{k+1}-x_{k}\right| \leq \alpha q^{2^{k}-1}$
Now a general difference,
$\left|x_{k+j}-x_{k}\right|=\left|x_{k+j}-x_{k+j-1}+x_{k+j-1}-x_{k+j-2}+\cdots+x_{k+1}-x_{k}\right| \leq \mid x_{k+j}-$ $x_{k+j-1}\left|+\left|x_{k+j-1}-x_{k+j-2}\right|+\cdots+\left|x_{k+1}-x_{k}\right| \leq \alpha q^{2^{k+j-1}-1}+\alpha q^{2^{k+j-2}-1}+\cdots+\right.$ $\alpha q^{2^{k}-1}=\alpha q^{-1}\left(q^{2^{k}}+q^{2^{k+1}}+\cdots+q^{2^{k+j-1}}\right) \leq \alpha q^{-1}\left(q^{2^{k}}+\left(q^{2^{k}}\right)^{2}+\left(q^{2^{k}}\right)^{4}+\ldots\right)=$ $\alpha q^{2^{k}-1}\left(1+\left(q^{2^{k}}\right)+\left(q^{2^{k}}\right)^{3}+\ldots\right) \leq \alpha q^{2^{k}-1}\left(1+\left(q^{2^{k}}\right)+\left(q^{2^{k}}\right)^{2}+\ldots\right)$
$\leq \alpha q^{2^{k}-1}\left(1+q+q^{2}+\ldots\right)=\alpha q^{2^{k}-1} \frac{1}{1-q} \leq \alpha q^{2^{k}-1} \frac{1}{1-\frac{1}{2}}=2 \alpha q^{2^{k}-1}$ since $0 \leq q<\frac{1}{2}<1$
Finally we have $\left|x_{k+j}-x_{k}\right| \leq 2 \alpha q^{2^{k}-1}(1)$
Note that by $k=0$ in (1)we have $\left|x_{j}-x_{0}\right| \leq 2 \alpha q^{2^{0}-1}=2 \alpha$ so $x_{k} \in\left[x_{0}-2 \alpha, x_{0}+2 \alpha\right]$
Also by (1) and $0 \leq q<1, x_{k}$ is a Cauchy sequence and converges to $z \in$ $\left[x_{0}-2 \alpha, x_{0}+2 \alpha\right]$.
By taking $j \rightarrow \infty$ in (1), we have $\left|z-x_{k}\right| \leq 2 \alpha q^{2^{k}-1}$.
Note that f^{\prime} is continuous with $f^{\prime}(x) \neq 0$. Taking $k \rightarrow \infty$ in $x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}$, we get $z=z-\frac{f(z)}{f^{\prime}(z)}$ or $f(z)=0$, so z is a root of f.

Now assume that the root z is not unique, i.e. there exists $w \neq z$ with $f(w)=0$. By MVT, for some ζ between z, w we have $f^{\prime}(\zeta)=\frac{f(z)-f(w)}{z-w}=\frac{0}{z-w}=0$ or $f^{\prime}(\zeta)=0$ which is a contradiction. Therefore $z=w$ and the root is unique.

