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Theorem 1. Newton-Kantorovich Theorem
1.Let f : [a, b]→ R
2.f ′ 6= 0 and there exists β > 0 such that 1

|f ′(x)| ≤ β

3.f ′ is Lipschitz continuous with constant γ
4.x0 ∈ [a, b] and xk+1 = xk − f(xk)

f ′(xk)
, k ≥ 0

5.
∣∣∣ f(x0)f ′(x0)

∣∣∣ = α

6.q = αβγ < 1
2

7.[x0 − 2α, x0 + 2α] ⊂ [a, b]
Then
1. limk→∞ xk = z ∈ [x0 − 2α, x0 + 2α] is a unique root of f
2. |xk − z| ≤ 2αq2

k−1

Proof. By definition we have, |xk+1−xk| =
∣∣∣ f(xk)f ′(xk)

∣∣∣ ≤ β|f(xk)| = β|f(xk)−f(xk−1)−

(xk−xk−1)f ′(xk−1)| = β
∣∣∣∫ xkxk−1 f ′(t)dt− f ′(xk−1) ∫ xkxk−1 dt∣∣∣ ≤ β

∣∣∣∫ xkxk−1 |f ′(t)− f ′(xk−1)|dt∣∣∣ ≤
βγ
∣∣∣∫ xkxk−1 |t− xk−1|dt∣∣∣ = 1

2βγ|xk − xk−1|
2 = p|xk − xk−1|2

Also by using the formula k times, |xk+1 − xk| ≤ p|xk − xk−1|2 ≤ p(p|xk−1 −
xk−2|2)2 = p1+21|xk−1 − xk−2|2

2 ≤ p1+21+22+···+2k−1|x1 − x0|2
k

= p
2k−1
2−1 |x1 − x0|2

k

=
1
p(pα)2

k

= α
αβγ (αβγ)2

k

= αq2
k−1

So we have |xk+1 − xk| ≤ αq2
k−1

Now a general difference,
|xk+j − xk| = |xk+j − xk+j−1 + xk+j−1 − xk+j−2 + · · · + xk+1 − xk| ≤ |xk+j −
xk+j−1| + |xk+j−1 − xk+j−2| + · · · + |xk+1 − xk| ≤ αq2

k+j−1−1 + αq2
k+j−2−1 + · · · +

αq2
k−1 = αq−1

(
q2

k

+ q2
k+1

+ · · ·+ q2
k+j−1

)
≤ αq−1

(
q2

k

+ (q2
k

)2 + (q2
k

)4 + . . .
)

=

αq2
k−1
(

1 + (q2
k

) + (q2
k

)3 + . . .
)
≤ αq2

k−1
(

1 + (q2
k

) + (q2
k

)2 + . . .
)

≤ αq2
k−1 (1 + q + q2 + . . .

)
= αq2

k−1 1
1−q ≤ αq2

k−1 1
1− 1

2

= 2αq2
k−1 since 0 ≤ q < 1

2 < 1

Finally we have |xk+j − xk| ≤ 2αq2
k−1(1)

Note that by k = 0 in (1)we have |xj−x0| ≤ 2αq2
0−1 = 2α so xk ∈ [x0−2α, x0+2α]

Also by (1) and 0 ≤ q < 1, xk is a Cauchy sequence and converges to z ∈
[x0 − 2α, x0 + 2α] (take j →∞ in (1))

Let g : [x0− 2α, x0 + 2α]→ [x0− 2α, x0 + 2α] be defined by g(x) = x− f(x)
f ′(x) ∈ C.

Then z = g(z) and f(z) = 0.

Also |g(y)− g(x)| =
∣∣∣y − x− f(y)−f(x)

f ′(x)

∣∣∣ = 1
|f ′(x)|

∣∣∫ y
x (f ′(x)− f ′(t))dt

∣∣
≤ β

∣∣∫ y
x |f

′(x)− f ′(t)|dt
∣∣ ≤ βγ

∣∣∫ y
x |x− t|dt

∣∣ ≤ 1
2βγ|x−y|

2 ≤ 2αβγ|x−y| = 2q|x−y|
Therefore g is a contraction since (2q < 1).
Now assume that z1 6= z with f(z1) = 0. Then |z1−z| = |g(z1)−g(z)| ≤ 2q|z1−z| <
|z1 − z| which is a contradiction. Therefore z is unique.
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Theorem 2. Error formula for the Simpson’s Rule
If f ∈ C4, error in the Simpson’s rule is − (b−a)5

180n4 f
(4)(η) where η ∈ (a, b)

Proof. With usual notation, let p(x) be the degree two Lagrange polynomial of f(x)
agreeing with it on three points x0, x1, x2 which are distance h apart.
Consider error on the first two intervals,

∫ x2
x0

(f(x)− p(x)) dx

We define a degree three polynomial as follows
q(x) = p(x) + 1

h2 (p′(x1)− f ′(x1))w(x) where w(x) = (x− x0)(x− x1)(x− x2)
We notice that q(xk) = p(xk) = f(xk) for k = 0, 1, 2 and q′(x1) = f ′(x1)

First we claim that f(x) = q(x)+ f (4)(ζ1)
4! u(x) where u(x) = (x−x0)(x−x1)2(x−x2)

and ζ1 ∈ (x0, x2). To prove this define g(y) = f(y)− q(y)− u(y)f(x)−p(x)u(x)

Now g(y) = 0 for y = x0, x1, x2, x and g′(x1) = 0
This implies, by the Mean Value Theorem that there is ζ1 ∈ (x0, x2) such that

g(4)(ζ1) = f (4)(ζ1) − 0 − 4!f(x)−p(x)u(x) = 0 or f(x) = q(x) + f (4)(ζ1)
4! u(x) for some

ζ1 ∈ (x0, x2) as desired.

Now we notice that∫ x2
x0
w(x)dx

=
∫ x2
x0

(x− x0)(x− x1)(x− x2)dx
=
∫ h
−h(t+ h)(t)(t− h)dt =

∫ h
−h(t

3 − h2t)dt = 0
This implies that∫ x2

x0
(f(x)− p(x)) dx =

∫ x2
x0

(f(x)− q(x)) dx =
∫ x2
x0

f (4)(ζ1)
4! u(x)dx = f (4)(η1)

4!

∫ x2
x0
u(x)dx

since u(x) does not change sign on (x0, x2) and because f (4)(η1(x)) is a continuous
function.

Now∫ x2
x0
u(x)dx

=
∫ x2
x0

(x− x0)(x− x1)2(x− x2)dx

=
∫ h
−h(t+ h)(t)2(t− h)dt =

∫ h
−h(t

4 − h2t2)dt =
[
t5

5 − h
2 t3

3

]h
−h

= 2
[
h5

5 −
h5

3

]
= − 4

15h
5

So the error on [x0, x2] is
f (4)(η1)

4!

∫ x2
x0
u(x)dx = f (4)(η1)

4!

(
− 4

15h
5
)

= −h5

90f
(4)(η1)

We notice here that n needs to be even in order to cover [a, b] by non-overlapping
intervals similar to [x0, x2] and we need n

2 of such intervals. Now adding error terms
in each interval we have the total error,∑n

2

j=1−h5

90f
(4)(ηj) = −h5

90

∑n
2

j=1 f
(4)(ηj) = −h5

90
n
2f

(4)(η) = −nh5

180f
(4)(η) for η ∈ (a, b)

using Extremum and Intermediate Value Theorems for f ∈ C4 ie. for f (4) ∈ C.
Using h = b−a

n , the total error is also equal to − (b−a)h4
180 f (4)(η) = − (b−a)5

180n4 f
(4)(η)


