One method of doing numerical integration is Gaussian Quadrature. Note that both the Trapezoidal and the Simpsons rules looks like $\int_{a}^{b} f(x) d x \approx \sum_{k} w_{k} f\left(x_{k}\right)$ and we knew x_{k} and found w_{k}. In this method we find both x_{k} and w_{k} so that the integral and the sum are equal for a given n degree polynomial $p(x)$. It is achieved by forcing both sides equal for each power of x^{j} for $j=0,1,2,, n$. What is the degree of the polynomial we need to use if we want 3 points and the corresponding 3 weights? Find them for $[a, b]=[-1,1]$ and use it to approximate $\int_{0}^{1} \sin \left(x^{2}\right) d x$.

