Q1. Find $\ln (1.5)$ accurate to 10^{-6} using the integral from of the Taylor series remainder.

Q2. Prove that the Taylor series remainder has the integral from $R_{n}(x, a)=$ $\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t$ for $f \in \mathcal{C}^{n+1}$ and use it to find $\ln (0.2)$ accurate to 10^{-6}.

Q3. Use the integral from of the Taylor series remainder $R_{n}(x, a)=\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-$ $t)^{n} d t$ for to derive its differential form $R_{n}(x, a)=\frac{f^{(n+1)}(\zeta)}{(n+1)!}(x-a)^{n+1}$ where ζ is between x and a provided $f \in \mathcal{C}^{n+1}$

Q4. Let $f(x)=\left\{\begin{array}{l}2 \text { if } x \text { is a rational number on }[a, b] \\ 1 \text { if } x \text { is an irrational number on }[a, b]\end{array}\right.$. Show that $f \notin \mathcal{R}[a, b]$ for $b>a$

Q5. Prove the following with suitable conditions

1. Integration by parts: $\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g(x) f^{\prime}(x) d x$
2. Change of variable: $\int_{g(a)}^{g(b)} f(y) d y=\int_{a}^{b} f(g(x)) g^{\prime}(x) d x$.
3. Leibniz rule: $\frac{d}{d x} \int_{a(x)}^{b(x)} f(t) d t=f(b(x)) b^{\prime}(x)-f(a(x)) a^{\prime}(x)$

Q6.

1. Find the range of x such that $\int_{0+}^{1} e^{-t} t^{x-1} d t$ converges and conclude that $\Gamma(x)$ exists iff $x>0$.
2. Show that $\lim _{x \rightarrow \infty} \Gamma(x)=\infty=\lim _{x \rightarrow 0^{+}} \Gamma(x)$

Q7. Find $\int_{0}^{1} e^{-x^{2}} d x$ accurate to $10^{-} 3$ using the trapezoidal rule.
Q8. Find $\int_{0}^{1} e^{-x^{2}} d x$ accurate to $10^{-} 3$ using the Simpson's rule.
Q9. Find the number of equispaced points needed to approximate $f(x)=$ $4 \sin ^{2}\left(\frac{\pi x}{12}\right)$ on $[2,6]$ accurate to 10^{-4}.

Q10. Use the Newton's method formula and analysis based of the fixed point method to find the root of $f(x)=x-e^{-x}$ accurate to 10^{-4} on $[0,1]$.

Q11. Prove the Mean Value Theorem

1. $f: \mathbb{D} \rightarrow \mathbb{R}, \mathbb{D}=\left\{(x, y) \mid(x-a)^{2}+(y-b)^{2}<\delta^{2}\right\}$
2. f_{x} and f_{y} exists on \mathbb{D}
3. $\Delta x^{2}+\Delta y^{2}<\delta^{2}$

Then

1. $f(a+\Delta x, b+\Delta y)=f(a, b)+\Delta x f_{x}(a+\theta \Delta x, b)+\Delta y f_{y}(a+\Delta x, b+\alpha \Delta y)$ and
$f(a+\Delta x, b+\Delta y)=f(a, b)+\Delta y f_{y}(a, b+\beta \Delta y)+\Delta x f_{x}(a+\gamma \Delta x, b+\Delta y)$
2. $0<\theta, \alpha, \beta, \gamma<1$

Q12. Find the maximum and minimum directional derivatives of $f(x, y)=$ $x y^{2}+\sin x+\log y$ at $(0,1)$.

Q13. Fit a least square line for the data set $\{(2,1),(3,2),(4,3),(6,4)\}$.

