Q1. Find $\ln(1.5)$ accurate to 10^{-6} using the integral from of the Taylor series remainder.

Q2. Prove that the Taylor series remainder has the integral from $R_n(x, a) =$ $\frac{1}{n!}\int_a^x f^{(n+1)}(t)(x-t)^n dt \text{ for } f \in \mathcal{C}^{n+1} \text{ and use it to find } \ln(0.2) \text{ accurate to } 10^{-6}.$

Q3. Use the integral from of the Taylor series remainder $R_n(x,a) = \frac{1}{n!} \int_a^x f^{(n+1)}(t) (x-t)^n dt$ for to derive its differential form $R_n(x,a) = \frac{f^{(n+1)}(\zeta)}{(n+1)!} (x-a)^{n+1}$ where ζ is between x and a provided $f \in \mathcal{C}^{n+1}$

Q4. Let $f(x) = \begin{cases} 2 \text{ if } x \text{ is a rational number on } [a, b] \\ 1 \text{ if } x \text{ is an irrational number on } [a, b] \end{cases}$ Show that $f \notin \mathcal{R}[a, b]$ for b > a

- Q5. Prove the following with suitable conditions 1. Integration by parts: $\int_a^b f(x)g'(x)dx = f(b)g(b) f(a)g(a) \int_a^b g(x)f'(x)dx$ 2. Change of variable: $\int_{g(a)}^{g(b)} f(y)dy = \int_a^b f(g(x))g'(x)dx$.

3. Leibniz rule: $\frac{d}{dx} \int_{a(x)}^{b(x)} f(t)dt = f(b(x))b'(x) - f(a(x))a'(x)$

Q6.

1. Find the range of x such that $\int_{0+}^{1} e^{-t} t^{x-1} dt$ converges and conclude that $\Gamma(x)$ exists iff x > 0.

2. Show that $\lim_{x\to\infty} \Gamma(x) = \infty = \lim_{x\to 0^+} \Gamma(x)$

Q7. Find $\int_0^1 e^{-x^2} dx$ accurate to 10⁻³ using the trapezoidal rule.

Q8. Find $\int_0^1 e^{-x^2} dx$ accurate to 10⁻³ using the Simpson's rule.

Q9. Find the number of equispaced points needed to approximate f(x) = $4\sin^2(\frac{\pi x}{12})$ on [2,6] accurate to 10^{-4} .

Q10. Use the Newton's method formula and analysis based of the fixed point method to find the root of $f(x) = x - e^{-x}$ accurate to 10^{-4} on [0, 1].

Q11. Prove the Mean Value Theorem 1. $f : \mathbb{D} \to \mathbb{R}, \mathbb{D} = \{(x, y) | (x - a)^2 + (y - b)^2 < \delta^2 \}$ 2. f_x and f_y exists on \mathbb{D} 3. $\Delta x^2 + \Delta y^2 < \delta^2$ Then 1. $f(a + \Delta x, b + \Delta y) = f(a, b) + \Delta x f_x(a + \theta \Delta x, b) + \Delta y f_y(a + \Delta x, b + \alpha \Delta y)$ and $f(a + \Delta x, b + \Delta y) = f(a, b) + \Delta y f_y(a, b + \beta \Delta y) + \Delta x f_x(a + \gamma \Delta x, b + \Delta y)$ 2. $0 < \theta, \alpha, \beta, \gamma < 1$

Q12. Find the maximum and minimum directional derivatives of $f(x,y) = xy^2 + \sin x + \log y$ at (0,1).

Q13. Fit a least square line for the data set $\{(2, 1), (3, 2), (4, 3), (6, 4)\}$.