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Theorem 1. Error formula for the Simpson’s Rule
If f ∈ C4, error in the Simpson’s rule is − (b−a)5

180n4 f
(4)(η) where η ∈ (a, b)

Proof. With usual notation, let p(x) be the degree two Lagrange polynomial of f(x)
agreeing with it on three points x0, x1, x2 which are distance h apart.
Consider error on the first two intervals,

∫ x2
x0

(f(x)− p(x)) dx

We define a degree three polynomial as follows
q(x) = p(x) + 1

h2 (p′(x1)− f ′(x1))w(x) where w(x) = (x− x0)(x− x1)(x− x2)
We notice that q(xk) = p(xk) = f(xk) for k = 0, 1, 2 and q′(x1) = f ′(x1)

First we claim that f(x) = q(x)+ f (4)(ζ1)
4! u(x) where u(x) = (x−x0)(x−x1)2(x−x2)

and ζ1 ∈ (x0, x2). To prove this define g(y) = f(y)− q(y)− u(y)f(x)−p(x)u(x)

Now g(y) = 0 for y = x0, x1, x2, x and g′(x1) = 0
This implies, by the Mean Value Theorem that there is ζ1 ∈ (x0, x2) such that

g(4)(ζ1) = f (4)(ζ1) − 0 − 4!f(x)−p(x)u(x) = 0 or f(x) = q(x) + f (4)(ζ1)
4! u(x) for some

ζ1 ∈ (x0, x2) as desired.

Now we notice that∫ x2
x0
w(x)dx

=
∫ x2
x0

(x− x0)(x− x1)(x− x2)dx
=
∫ h
−h(t+ h)(t)(t− h)dt =

∫ h
−h(t

3 − h2t)dt = 0
This implies that∫ x2

x0
(f(x)− p(x)) dx =

∫ x2
x0

(f(x)− q(x)) dx =
∫ x2
x0

f (4)(ζ1)
4! u(x)dx = f (4)(η1)

4!

∫ x2
x0
u(x)dx

since u(x) does not change sign on (x0, x2) and because f (4)(η1(x)) is a continuous
function.

Now∫ x2
x0
u(x)dx

=
∫ x2
x0

(x− x0)(x− x1)2(x− x2)dx

=
∫ h
−h(t+ h)(t)2(t− h)dt =

∫ h
−h(t

4 − h2t2)dt =
[
t5

5 − h
2 t3

3

]h
−h

= 2
[
h5

5 −
h5

3

]
= − 4

15h
5

So the error on [x0, x2] is
f (4)(η1)

4!

∫ x2
x0
u(x)dx = f (4)(η1)

4!

(
− 4

15h
5
)

= −h5

90f
(4)(η1)

We notice here that n needs to be even in order to cover [a, b] by non-overlapping
intervals similar to [x0, x2] and we need n

2 of such intervals. Now adding error terms
in each interval we have the total error,∑n

2

j=1−h5

90f
(4)(ηj) = −h5

90

∑n
2

j=1 f
(4)(ηj) = −h5

90
n
2f

(4)(η) = −nh5

180f
(4)(η) for η ∈ (a, b)

using Extremum and Intermediate Value Theorems for f ∈ C4 ie. for f (4) ∈ C.
Using h = b−a

n , the total error is also equal to − (b−a)h4
180 f (4)(η) = − (b−a)5

180n4 f
(4)(η)
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Theorem 2. Newton-Kantorovich Theorem
1.Let f : [a, b]→ R
2.f ′ is Lipschitz continuous with constant γ
3.f ′(x) 6= 0 and 1

|f ′(x)| ≤ β

4.x0 ∈ [a, b] and
∣∣∣ f(x0)f ′(x0)

∣∣∣ = α

5.q = αβγ < 1
2

6.[x0 − 2α, x0 + 2α] ⊂ [a, b]

7. xk+1 = xk − f(xk)
f ′(xk)

, k ≥ 0
Then
1. limk→∞ xk = z ∈ [x0 − 2α, x0 + 2α].
2. f(z) = 0 and z is a unique root of f
3. |xk − z| ≤ 2αq2

k−1

Proof. By definition we have, |xk+1−xk| =
∣∣∣ f(xk)f ′(xk)

∣∣∣ ≤ β|f(xk)| = β|f(xk)−f(xk−1)−

(xk−xk−1)f ′(xk−1)| = β
∣∣∣∫ xkxk−1 f ′(t)dt− f ′(xk−1) ∫ xkxk−1 dt∣∣∣ ≤ β

∣∣∣∫ xkxk−1 |f ′(t)− f ′(xk−1)|dt∣∣∣ ≤
βγ
∣∣∣∫ xkxk−1 |t− xk−1|dt∣∣∣ = 1

2βγ|xk − xk−1|
2 = p|xk − xk−1|2

Also by using the formula k times, |xk+1 − xk| ≤ p|xk − xk−1|2 ≤ p(p|xk−1 −
xk−2|2)2 = p1+21|xk−1 − xk−2|2

2 ≤ p1+21+22+···+2k−1|x1 − x0|2
k

= p
2k−1
2−1 |x1 − x0|2

k

=
1
p(pα)2

k

= α
αβγ (αβγ)2

k

= αq2
k−1

So we have |xk+1 − xk| ≤ αq2
k−1

Now a general difference,
|xk+j − xk| = |xk+j − xk+j−1 + xk+j−1 − xk+j−2 + · · · + xk+1 − xk| ≤ |xk+j −
xk+j−1| + |xk+j−1 − xk+j−2| + · · · + |xk+1 − xk| ≤ αq2

k+j−1−1 + αq2
k+j−2−1 + · · · +

αq2
k−1 = αq−1

(
q2

k

+ q2
k+1

+ · · ·+ q2
k+j−1

)
≤ αq−1

(
q2

k

+ (q2
k

)2 + (q2
k

)4 + . . .
)

=

αq2
k−1
(

1 + (q2
k

) + (q2
k

)3 + . . .
)
≤ αq2

k−1
(

1 + (q2
k

) + (q2
k

)2 + . . .
)

≤ αq2
k−1 (1 + q + q2 + . . .

)
= αq2

k−1 1
1−q ≤ αq2

k−1 1
1− 1

2

= 2αq2
k−1 since 0 ≤ q < 1

2 < 1

Finally we have |xk+j − xk| ≤ 2αq2
k−1(1)

Note that by k = 0 in (1)we have |xj−x0| ≤ 2αq2
0−1 = 2α so xk ∈ [x0−2α, x0+2α]

Also by (1) and 0 ≤ q < 1, xk is a Cauchy sequence and converges to z ∈
[x0 − 2α, x0 + 2α].
By taking j →∞ in (1), we have |z − xk| ≤ 2αq2

k−1.

Note that f ′ is continuous with f ′(x) 6= 0. Taking k → ∞ in xk+1 = xk − f(xk)
f ′(xk)

,

we get z = z − f(z)
f ′(z) or f(z) = 0, so z is a root of f .

Now assume that the root z is not unique, i.e. there exists w 6= z with f(w) = 0.

By MVT, for some ζ between z, w we have f ′(ζ) = f(z)−f(w)
z−w = 0

z−w = 0 or f ′(ζ) = 0
which is a contradiction. Therefore z = w and the root is unique.
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Theorem 1.
If lim(x,y)→(a,b) f(x, y) = L, limx→a f(x, y) = g(y) in a dnbd of b and limy→b f(x, y) =
h(x) in a dnbd of a, Then limx→a h(x) = limy→b g(y) = L.

Proof.
Let ε > 0, then lim(x,y)→(a,b) f(x, y) = L implies ∃δ > 0,∀(x, y);
0 <

√
(x− a)2 + (y − b)2 < δ ⇒ |f(x, y)− L| < ε/2.

limx→a f(x, y) = g(y) in a dnbd of b implies ∃δ1, whenever 0 < |y − b| < δ1,
∃δ2(y) > 0∀x such that 0 < |x− a| < δ2(y)⇒ |f(x, y)− g(y)| < ε/2
Let δ3(y) = min{δ2(y), δ/

√
2} > 0 and δ4 = min{δ1, δ/

√
2} > 0

Now when 0 < |y − b| < δ4 select x such that 0 < |x− a| < δ3(y). Then
0 < |x− a| < δ2(y) so |f(x, y)− g(y)| < ε/2.
We also have 0 < |x−a| < δ/

√
2 and 0 < |y−b| < δ/

√
2 so 0 <

√
(x− a)2 + (y − b)2 <

δ which implies |f(x, y)− L| < ε/2.
Now |g(y)− L| ≤ |f(x, y)− g(y)|+ |f(x, y)− L| < ε which means
L = limy→b g(y) = limy→b limx→a f(x, y)
In the same way we can prove L = limx→a h(x) = limx→a limy→b f(x, y)

Note 1.
When the one variable limits exist, but the iterated limits are different, this theorem
can be used to show that the double limit does not exist.
For example let f(x, y) = x−y

x+y for (x, y) 6= (0, 0). Then limx→0 f(x, y) = −1 = g(y)
exists in a dnbd of 0 and limy→0 g(y) = −1. Also limy→0 f(x, y) = 1 = h(x) exists
in a dnbd of 0 and limy→0 h(x) = 1. Therefore lim(x,y)→(a,b) f(x, y) does not exist.

Theorem 2.
If lim(x,y)→(a,b) f(x, y) = L and limx→a g(x) = b then limx→a f(x, g(x)) = L

Proof. Let ε > 0, then lim(x,y)→(a,b) f(x, y) = L implies ∃δ > 0,∀(x, y);
0 <

√
(x− a)2 + (y − b)2 < δ ⇒ |f(x, y)− L| < ε.

limx→a g(x) = b implies ∃δ1 > 0∀x, 0 < |x− a| < δ1 ⇒ |g(x)− b| < δ/
√
2

Let δ3 = min{δ1, δ/
√
2} > 0.

Now if 0 < |x−a| < δ3 we have 0 < |x−a| < δ/
√
2 and |y−b| < δ/

√
2 where y = g(x).

Therefore we have 0 <
√
(x− a)2 + (y − b)2 < δ which implies |f(x, g(x))−L| < ε.

This means limx→a f(x, g(x)) = L.

Note 2.
If g is continuous such that g(a) = b we get limx→a g(x) = g(a) = b which is a
required condition.
If we can find two different functions g, h such that limx→a g(x) = b = limx→a h(x)
but if limx→a f(x, g(x)) 6= limx→a f(x, h(x)) this means the double limit does not ex-
ist.
For example let f(x, y) = xy

x2+y2 for (x, y) 6= (0, 0). Let g(x) = mx which gives
limx→a g(x) = 0. But limx→0 f(x, g(x)) =

m
1+m2 , so the answer depends on m. There-

fore lim(x,y)→(a,b) f(x, y) does not exist.


