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Note 1.
B=set of Bounded functions
C=set of Continuous functions
D=set of Differentiable functions
Dn=set of n times Differentiable functions
Cn=set of n times Continuously Differentiable functions
R=set of Riemann Integrable functions
P=set of all possible Partitions of an interval
LC=set of Lipchitz Continuous functions
UC=set of Uniformly Continuous functions

Color Index
For additional knowledge, these topics will NOT be tested at the exam.

1 Preliminaries

Axiom 1. Completeness Axiom
If A is a bounded non-empty subset of real numbers R then supA and inf A exists.

Theorem 1. Intermediate Value Theorem
Let f : [a, b] → R be a continuous function. Let c be between f(a) and f(b). Then
there exists x ∈ (a, b) such that f(x) = c.

Theorem 2. Extreme Value Theorem
Let f : [a, b] → R be a continuous function. Then f attains its maximum and
minimum on [a, b] i.e. there exists c, d ∈ [a, b] such that f(c) = max{f(x)|x ∈ [a, b]}
and f(d) = min{f(x)|x ∈ [a, b]}.

Theorem 3. Mean Value Theorem
Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Then there

exists ζ ∈ (a, b) such that f(b)−f(a)
b−a = f ′(ζ)

Theorem 4. Generalized Mean Value Theorem
Let f, g : [a, b]→ R be continuous on [a, b] and differentiable on (a, b) and g′ 6= 0 on

(a, b). Then there exists ζ ∈ (a, b) such that f(b)−f(a)
g(b)−g(a) = f ′(ζ)

g′(ζ)

Theorem 5. L’Hopital Rule
Let f, g ∈ D, f(a) = g(a) = 0 and g′ 6= 0 except possibly at a.

If limx→a
f(x)
g(x) = L then f ′(x)

g′(x) = L.

Theorem 6. Ratio Test for absolute convergence

Let uk 6= 0 and limk→∞

∣∣∣uk+1

uk

∣∣∣ = L

1. If L < 1 then
∑∞

k=1 uk converges absolutely
2. If L > 1 then

∑∞
k=1 uk diverges

Theorem 7. Root Test for absolute convergence
Let uk 6= 0 and limk→∞ |uk|1/k = L
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1. If L < 1 then
∑∞

k=1 uk converges absolutely
2. If L > 1 then

∑∞
k=1 uk diverges

Theorem 8. Bounded Convergence theorems
If f is bounded above and increasing then limx→∞ f(x) exist finitely and equal to
sup{f(x)}.
If f is increasing and limx→∞ f(x) exists finitely then sup{f(x)} exists and equal to
it

Note 2.
1. It is convenient to assume f ∈ D in a larger open interval containing (a, b) for
Mean Value Theorems.
2. L’Hopital rule applies in all other cases of limits of x and even when f(x), g(x)→
0 or ∞ at the limit with conditions suitably modified.
3. Similar Bounded Convergence theorems exists for functions which are bounded
below and decreasing.

2 Riemann Integral

Proof of theorems on this section will NOT be tested at the exam.

Definition 1. Riemann Integral
Let f be bounded on [a, b]. i.e. f ∈ B[a, b]
Let P = {x0, x1, · · · , xn} with x0 = a, xn = b and ∆xk = xk−xk−1 > 0 for 1 ≤ k ≤ n

be a partition of [a, b], i.e. P ∈ P [a, b].
Let Mk = Mk(P, f) = sup{f(x)|x ∈ [xk−1, xk]} and
mk = mk(P, f) = inf{f(x)|x ∈ [xk−1, xk]}
Define Upper Riemann sum U(P, f) =

∑n
k=1Mk∆xk and

Lower Riemann Sum L(P, f) =
∑n

k=1mk∆xk
Define Upper Riemann Integral U(f) = inf{U(P, f)|P ∈ P [a, b]} and
Lower Riemann Integral L(f) = sup{L(P, f)|P ∈ P [a, b]}.
Iff U(f) = L(f) we say that f is Riemann Integrable on [a, b]. i.e. f ∈ R[a, b] and

write
∫ b
a f(x)dx for the common value and call it the Riemann integral of f on [a, b].

Note 3. It is clear that mk ≤Mk therefore L(P, f) ≤ U(P, f)
We will later show that even L(f) ≤ U(f) is true.

Example 1.
1. Consider the function f(x) = 1 if x ∈ Q and 2 if x ∈ R−Q. Is f ∈ R[a, b]?
2. Consider equispaced partitions of [a, b] for the function f(x) = ex. Show that
U(f) = L(f) = eb − ea without direct integration.

Theorem 9. Let P, P ∗ ∈ P [a, b].
We say that P ∗ is a refinement of P iff P ⊂ P ∗

We have L(P ∗, f) ≥ L(P, f) and U(P ∗, f) ≤ U(P, f)
Also L(f) ≤ U(f) for any P ∈ P [a, b]
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Theorem 10. Riemann condition for Riemann Integrability
f ∈ R[a, b] iff ∀ε > 0,∃P ∈ P [a, b];U(P, f)− L(P, f) < ε

Theorem 11. If f, g ∈ R[a, b] then

1. f + g ∈ R[a, b] and
∫ b
a (f(x) + g(x))dx =

∫ b
a f(x)dx+

∫ b
a g(x)dx

2. fg ∈ R[a, b]

3. If f ≤ g on [a, b] then
∫ b
a f(x)dx ≤

∫ b
a g(x)dx

4. |f | ∈ R[a, b] and |
∫ b
a f(x)dx| ≤

∫ b
a |f(x)|dx

5. If c ∈ (a, b) then f ∈ R[a, c], f ∈ R[c, b] and
∫ b
a f(x)dx =

∫ c
a f(x)dx+

∫ b
c f(x)dx

Definition 2. Motivated by the above, we define∫ a
a f(x)dx = 0 and

∫ a
b f(x)dx = −

∫ b
a f(x)dx for b > a.

Theorem 12. f ∈ R[a, b]⇒ ∀ε > 0,∃P ∈ P [a, b],∀tk ∈ [xk−1, xk]; |
∑n

k=1 f(tk)∆xk−∫ b
a f(x)dx| < ε

Note 4.
1. The converse of the above theorem is also true, so
f ∈ R[a, b] and I =

∫ b
a f(x)dx iff

∀ε > 0,∃P ∈ P [a, b],∀tk ∈ [xk−1, xk]; |
∑n

k=1 f(tk)∆xk − I| < ε

So one can use the above as the definition of the Riemann integral.
2. Also one can show that it is sufficient to use the equispaced partitins, i.e.
Let P [a, b] be equispaced partitions(i.e. ∆xk = (b − a)/n). Then f ∈ R[a, b] iff
∀ε > 0,∃P ∈ P [a, b];U(P , f)− L(P , f) < ε

3. These lead to the following simple definition
P ∈ P [a, b] and ∆xk = (b− a)/n. Then

f ∈ R[a, b] and I =
∫ b
a f(x)dx iff ∀tk ∈ [xk−1, xk]; limn→∞

∑n
k=1 f(tk)∆xk = I

Theorem 13. Fundamental Theorem of Calculus
If f ∈ R[a, b] and there exists F ∈ D[a, b] such that f = F ′

then
∫ b
a f(x)dx = F (b)− F (a).

Definition 3. Strong forms of Continuity
1. f is uniformly continuous on A i.e. f ∈ UC(A)
iff ∀ε > 0,∃δ > 0,∀x, y ∈ A; |x− y| < δ ⇒ |f(x)− f(y)| < ε
2. f is Lipchitz continuous on A i.e. f ∈ LC(A)
iff ∃L > 0,∀x, y ∈ A; |f(x)− f(y)| ≤ L|x− y|

Theorem 14. f ∈ LC(A)⇒ f ∈ UC(A)⇒ f ∈ C(A)

Theorem 15. f ∈ C[a, b]⇒ f ∈ UC[a, b]⇒ f ∈ R[a, b]

Example 2. Show that 1
x is not uniformly continuous on (0, 1] but x2 is.

Theorem 16. Second Fundamental Theorem of Calculus
Let f ∈ R[a, b], x ∈ [a, b] and F (x) =

∫ x
a f(t)dt.

If f ∈ R[a, b] then F ∈ C[a, b]
If s ∈ (a, b) and f ∈ C(s) then F ∈ D(s) and F ′(s) = f(s)
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Theorem 17. Integration by Parts
If F,G differentiable on [a, b],F ′ = f ∈ R[a, b] and G′ = g ∈ R[a, b]. Then∫ b
a F (x)g(x)dx = F (b)G(b)− F (a)G(a)−

∫ b
a f(x)G(x)dx

Theorem 18. Change of Variable
g has continuous derivative g′ on [c, d]. f is continuous on g([c, d]) and let F (x) =∫ x
g(c) f(t)dt, x ∈ g([c, d]). Then for each x ∈ [c, d],

∫ x
c f(g(t))g′(t)dt exists and has

value F (g(x)).

Theorem 19. Leibniz Rule
Let f be continuous and the functions a(x) and b(x) be differentiable. Then
d
dx

∫ b(x)

a(x) f(t)dt = f(b(x))b′(x)− f(a(x))a′(x)

Theorem 20. Mean Value Theorem for Integrals
f ∈ C[a, b]. Then there exists ζ ∈ (a, b) such that

∫ b
a f(x)dx = f(ζ)(b− a).

Theorem 21. Generalized Mean Value Theorem for Integrals
f ∈ C[a, b], g ∈ R[a, b] and g does not change sign on [a, b]. Then there exists

ζ ∈ (a, b) such that
∫ b
a f(x)g(x)dx = f(ζ)

∫ b
a g(x)dx.

3 Improper Riemann Integral

Definition 4. Improper Integrals of the First Kind
Suppose

∫ b
a f(x)dx exists for each b ≥ a

Iff limb→∞
∫ b
a f(x)dx exists and equal to I ∈ R we say that

∫∞
a f(x)dx converges to

the value I and diverges otherwise.

Theorem 22. Direct Comparison Test for Integrals
Let f, g ∈ R[a, b] for all b > a and 0 ≤ f(x) ≤ g(x) for all x > a.
If
∫∞
a g(x)dx converges, then

∫∞
a f(x)dx converges.

Theorem 23. Limit Comparison Test for Integrals
Let f, g ∈ R[a, b] for all b > a and f(x), g(x) > 0 for all x > a.

If limx→∞
f(x)
g(x) = c, then if

1. c ∈ (0,∞) then
∫∞
a f(x)dx conv.⇔

∫∞
a g(x)dx conv.

2. c = 0 and
∫∞
a g(x)dx conv.⇒

∫∞
a f(x)dx conv.

3. c =∞ and
∫∞
a g(x)dx div.⇒

∫∞
a f(x)dx div.

Definition 5. Other types of Improper Integrals
1. f : [a,∞)→ R :

∫∞
a f(x)dx = limb→∞

∫ b
a f(x)dx

2. f : (−∞, b]→ R :
∫ b
−∞ f(x)dx = lima→−∞

∫ b
a f(x)dx

3. f : R→ R :
∫∞
−∞ f(x)dx =

∫ c
−∞ f(x)dx+

∫∞
c f(x)dx, c ∈ R

4. f : (a, b]→ R :
∫ b
a+ f(x)dx = limt→a+

∫ b
t f(x)dx

5. f : [a, b)→ R :
∫ b−
a f(x)dx = limt→b−

∫ t
a f(x)dx

6. f : [a, c) ∪ (c, b]→ R :
∫ b
a f(x)dx =

∫ c−
a f(x)dx+

∫ b
c+ f(x)dx
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Note 5.
1. If types 3 and 6 lead to ∞ − ∞ we try the Cauchy Principal Value given by

limb→∞
∫ b
−b f(x)dx for case 3 and limδ→0

(∫ c−δ
a f(x)dx+

∫ b
c+δ f(x)dx

)
for case 6.

2. Similar types of convergence tests exists for above types of improper integrals.

Example 3.
1. Find

∫ 1

−1
1
x2dx if it exists.

2. Prove that
∫∞
a |f(x)|dx conv. ⇒

∫∞
a f(x)dx conv.

3. Prove that if |f(x)| ≤ Meax, then the Laplace Transform of f(x), F (s) =∫∞
0 f(x)e−sxdx exists for all s > a.

Example 4. Gamma function is defined by Γ(x) =
∫∞

0 e−ttx−1dt. Show that
1. F (x) exists iff x > 0.
2. Γ(x) = (x− 1)Γ(x− 1), x > 1.
3. Γ(n) = (n− 1)! for all integer n ≥ 1.
4. limx→∞ Γ(x) =∞ = limx→0+ Γ(x)
5. we can use (2) to define Γ(x) for x < 0.
6. Γ(x) does not exist for x = 0,−1,−2,−3, · · ·
7. Show that Γ(1

2) =
√
π and

∫∞
0 e−t

2

dt =
√
π using Γ(x)Γ(1− x) = π

sinπx

8. Use the formula for the n dimensional ball Vn(r) = π
n
2

Γ(1+n
2 ) to find the volumes of

2, 3, 4, 5 dimensional balls.
9. Show that Γ(x) is continuous on (0,∞).
10. Prove that the Beta Function B(x, y) =

∫ 1

0 t
x−1(1− t)y−1dt exists iff x, y > 0. It

can be shown that B(x, y) = Γ(x)Γ(y)
Γ(x+y) .

Example 5.
1. Test the convergence of

∫∞
0

sinx
x dx

2. Fresnel Integrals are defined by S(x) =
∫ x

0 sin(t2)dt and C(x) =
∫ x

0 cos(t2)dt.
Test the convergence of S(∞) and C(∞).
3. The Logarithmic Integral is defined by li(x) =

∫ x
0

dt
log t. Check the convergence of

each of the following:
∫ 1/2

0
dt

log t ,
∫ 1

1/2
dt

log t ,
∫ 2

1
dt

log t ,
∫∞

2
dt

log t

Example 6. The exponential integral is defined by Ei(x) = −
∫∞
−x

e−t

t dt. We are

interested in the related integral F (x) =
∫ x

1
e−t

t dt which is equal to Ei(−x)−Ei(−1).
1. Show that F (∞) is a converging improper Riemann integral.
2. Show that F (0) is a diverging improper Riemann integral.
3. Write the 2nd degree (n = 2) Taylor polynomial and the integral form of the
remainder of the Taylor series of F (x) at a = 1.
4. What can be the radius of convergence of the Taylor series of F (x) at a = 1?
Direct proof is not needed, use the previous.

4 Taylor Series with Remainder

Theorem 24. Taylor series of f ∈ Dn+1 at a.
f(x) = Tn(x, a) +Rn(x, a)
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Taylor Polynomial Tn(x, a) =
∑n

k=0
f (k)(a)
k! (x− a)k

Lagrange Remainder Rn(x, a) = f (n+1)(ζ)
(n+1)! (x− a)n+1

where ζ between x and a

Proof. Use Generalized Mean Value Theorem on F (t) =
∑n

k=0
1
k!f

(k)(t)(x− t)k and
G(t) = (x− t)n+1.

Example 7. Let f(x) = ln(1 + x). Show that

1. Tn(x, 0) =
∑n

k=1
(−1)k−1

k xk

2. Find the range of convergence of x
3. Show that Rn(x, 0)→ 0 as n→∞ for −1

2 < x < 1
4. Find the value of ln(1.5) accurate to 0.000001

Theorem 25. Integral form of the Remainder. f ∈ Cn+1

Rn(x, a) = 1
n!

∫ x
a f

(n+1)(t)(x− t)ndt

Example 8.
1. Show that Rn(x, 0)→ 0 as n→∞ for x < 0
2.Find the value of ln(0.2) accurate to 0.000001

Theorem 26. Other forms of Remainders. f ∈ Cn+1

Rn(x, a) = f (n+1)(ζ)
n!(p+1) (x− ζ)n−p(x− a)p+1, 0 ≤ p ≤ n

p = n, Lagrange Remainder Rn(x, a) = f (n+1)(ζ)
(n+1)! (x− a)n+1

p = 0, Cauchy Remainder Rn(x, a) = f (n+1)(ζ)
n! (x− ζ)n(x− a)

where ζ between x and a

Theorem 27. When a is fixed, ζ in the error term is a function of x, and can be
written as ζ(x). If f ∈ Cn+1 then f (n+1)(ζ(x)) ∈ C

Proof. We have f (n+1)(ζ(x)) = (n+ 1)!f(x)−Tn(x,a)
(x−a)n+1 , so clearly f (n+1)(ζ(x)) is continu-

ous for x 6= a. For x = a, this leads to the 0/0 situation. But either a < ζ(x) < x
or x < ζ(x) < a is true and since limx→a x = a, we have by the Sandwitch
theorem,limx→a ζ(x) = a. Now If f ∈ Cn+1 and if we define ζ(a) = a, we have
limx→a f

(n+1)(ζ(x)) = f (n+1)(limx→a ζ(x)) = f (n+1)(a) = f (n+1)(ζ(a)), so ζ(x) is con-
tinuous at a too. Note that this means ζ(x) is continuous at

Example 9.
1. Find the value of ln(0.02) accurate to 10−6 using the Taylor series expansion at
0 for x < 0.
2. Find the values of ln 2, ln 5, ln 500, ln(0.2), ln(0.02) accurate to 10−6 using the
Taylor series expansion at 0 for x > 0.
3. Find the Taylor series expansions for ex, sinx, tan−1 x, tanx at 0 with remainder.
4. Find the range of convergence.
5. Show that the remainder Rn(x, a)→ 0 as n→∞ within the range of convergence.
6. Find the values of e, sin 1, tan−1 1 accurate to the 10th decimal place.
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7. Find the values of e4, sin 4, tan−1 4 accurate to the 6th decimal place using a
suitable Taylor series expansion.
8. Deduce the values of 7. from 6. whenever it is possible.
9. Show that e is irrational.

Definition 6. Power Series
An infinite series of the form

∑∞
k=0 uk(x) is

1. Converges point-wise to S(x) iff
∀ε > 0∀x∃N > 0∀n;n > N ⇒ |

∑n
k=0 uk(x)− S(x)| < ε

2. Converges Uniformly to S(x) iff
∀ε > 0∃N > 0∀x∀n;n > N ⇒ |

∑n
k=0 uk(x)− S(x)| < ε

Definition 7. A Power Series at a
is an infinite series of the form S(x) =

∑∞
k=0 ak(x− a)k.

Theorem 28.
1. There exists R ∈ [0,∞] called the radius of convergence such that a power series
converges absolutely and uniformly for |x− a| < R and diverges for |x− a| > R.
2. The power series may converge conditionally or diverge for |x− a| = R

3. Radius of convergence R = 1
limk→∞ |ak|1/k

4. Since the power series is uniformly converges for x ∈ (a − R, a + R) the series
may be differentiated term-by-term giving S ′(x) =

∑∞
k=1 kak(x−a)k−1 with the same

radius of convergence.
5. Since the power series is uniformly converges for x ∈ (a − R, a + R) the series
may be integrated term-by-term giving

∫ x
a S(t)dt =

∑∞
k=0

ak
k+1(x−a)k+1 with the same

radius of convergence.

Example 10. Consider the ellipse x2

a2 + y2

b2 = 1
1. Write down the length of the perimeter C(a, b) as a definite integral.
2. Convert the above integral into the Incomplete Elliptic Integral of the Second

Kind E(φ, k) =
∫ φ

0

√
1− k2 sin2 xdx.

3. What is C(a, a)?
4. Use Taylor Series to calculate C(a, 2a)/C(a, a) accurate to 0.001.

Example 11. Consider a pendulum of mass m and length ` oscillating at an angle
2α in a gravitational field of strength g.
1. Write the time period T (α) as a definite integral.
2.Convert the above integral into the Incomplete Elliptic Integral of the First Kind
F (φ, k) =

∫ φ
0

1√
1−k2 sin2 x

dx.

3. What is T (0) or the limit?
4. Use Taylor Series to calculate T

(
π
2

)
/T (0) accurate to 0.001.

Note 6. We may write the Taylor expansion as
f(a+ h) =

∑n
k=0

1
k!D

kf(a) + 1
(n+1)!D

n+1f(a+ θh)

where D = h d
dx , D

k = D(Dk−1), D0 = 1 and θ ∈ (0, 1).
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Theorem 29. Second Derivative Test
f ∈ C1, f ′(a) = 0.
1. If f ′′(a) > 0 then a is a local minimum of f .
2. If f ′′(a) < 0 then a is a local maximum of f .

Proof. Use the second order Taylor series f(a+ h) = f(a) + f ′(a)h+ 1
2f
′′(a+ θh).

Note that the first two terms are the Tangent Line at a. Since f ′(a) = 0 we have
f(a + h) − f(a) = 1

2f
′′(a + θh). Since f ′′ ∈ C and f ′′(a) > 0, we can select h such

that f ′′(a+ θh) > 0 for all θ ∈ (0, 1).

Casio 1. CASIO fx-991ES
Formula:(ALPHAX + 1)2x�ALPHAX − 10x�6CALCX?10 =
Sum: SHIFT

∑�
��:

∑
((−1)x�(ALPHAX−1)(1÷2)x�ALPHAX÷ALPHAX, 1, 10)

Mathematica 1.
Formula: f [n ] := (1 + n)2n − 106;Table[{n, f [n]}, {n, 1, 50}]
Sum: Sum[(−1)Λ(k − 1)(1/2)Λk/k, {k, 1, 10}]
Taylor Series: Series[Log[1 + x], {x, 0, 20}]

5 Numerical Integration

Theorem 30. Trapezoidal Rule
f ∈ C2[a, b], h = b−a

n , x0 = a, xn = b, xk = x0 + kh, 0 ≤ k ≤ n, ζ ∈ (a, b)∫ b
a f(x)dx = h

2

[
f(x0) + 2

∑n−1
k=1 f(xk) + f(xn)

]
− (b−a)3

12n2 f
′′(ζ)

Theorem 31. Simpson’s Rule(see Proofs.pdf for the proof for the error)
f ∈ C4[a, b], n is even, h = b−a

n , x0 = a, xn = b, xk = x0 + kh, 0 ≤ k ≤ n, ζ ∈ (a, b)∫ b
a f(x)dx = h

3

[
f(x0) + 4

∑n−1
k=1
kodd

f(xk) + 2
∑n−2

k=2
keven

f(xk) + f(xn)

]
− (b−a)5

180n4 f
(4)(ζ)

Example 12.
1. For each of the following integrals, use the Trapezoidal and Simpson’s rules to
find the number of divisions needed to find its value accurate to 0.001 and find the
integral to that accuracy.∫ 1

0 sin(x2)dx∫ 2

0 cos(x2)dx∫ 1

0 e
−x2dx∫ π

2

0

√
2− cos2 xdx∫ 10

2
x

log xdx

2. Derive a numerical integration rule and its error that uses the function value at
the mid point (Mid Point Rule), left end point, right end point of each interval.
3. Use Mid Point Rule rule to do the integrals in Q1.
4. Show directly that cubic polynomials are integrated exactly(error is 0) by the
Simpson’s rule.
5. Use Taylor series to derive an approximate formula for the remainder in Trape-
zoidal rule.
6. Use integration by parts to prove the error formula for the Simpson’s rule.
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Example 13.
One method of doing numerical integration is Gaussian Quadrature. Note that both
the Trapezoidal and the Simpsons rules looks like

∫ b
a f(x)dx ≈

∑
k wkf(xk) and we

knew xk and found wk. In this method we find both xk and wk so that the integral
and the sum are equal for a given n degree polynomial p(x). It is achieved by forcing
both sides equal for each power of xj for j = 0, 1, 2, , n. What is the degree of the
polynomial we need to use if we want 3 points and the corresponding 3 weights? Find
them for [a, b] = [−1, 1] and use it to approximate integrals given above.
Casio fx-991ES uses a variant of this method.

Example 14. We want to approximate the value of F (2) =
∫ 2

1
e−t

t dt numerically
accurate to 0.001.
1. Consider the method of term-by-term integration after using the Taylor series of
e−t at a = 0. What is the degree of the Taylor polynomial (n) that we have to use?
Note that f (n+1)(ζ) in the error term is a continuous function of t.
2. Find the value of F (2) accurate to 0.001 by this Taylor series method. Use the
sum function in the calculator and confirm your answer by integrating function in
the calculator.
3. Consider method of the Trapezoidal rule. How many intervals (n) needed?
4. Find the value of F (2) accurate to 0.001 by this Trapezoidal method. Use the
sum function in the calculator and confirm your answer by integrating function in
the calculator.

Casio 2.
∫

(f(X), a, b,m) and the default variable is X and n = 2m for the Simpson’s
method in model fx-991MS

Mathematica 2. NIntegrate[f(x), {x, a, b},Method− > TrapezoidalRule]

6 Interpolation

Theorem 32. Lagrange Method of finding the Interpolating Polynomial p(x) of f(x)
for the points xk, 0 ≤ k ≤ n
wj(x) =

∏n
i=0
i 6=j

(x− xi)

w(x) =
∏n

i=0(x− xi)
`j(x) =

wj(x)
wj(xj)

=
∏n

i=0
i6=j

(
x−xi
xj−xi

)
= w(x)

(x−xj)w′(xj) and `j(xk) = 0 if j 6= k and 1 if j = k.

p(x) =
∑n

k=0 f(xk)`k(x) and p(xj) = f(xj), 0 ≤ j ≤ n

f(x) = p(x) + f (n+1)(ζ)
(n+1)! w(x) with ζ ∈ (x0, xn) when f ∈ C(n+1)

Example 15. Consider the data set A = {(2, 1), (3, 2), (4, 3), (6, 4)}
1. Show that that the data set may be generated by the function f(x) = 4 sin2(πx12 ).
Find an upper bound for the error.
2. For the same function on [0, 6], find the number of points required to make the
error ≤ 0.001 and find the Interpolating Polynomial.
3. Use the error formula for the interpolating polynomial to derive the error formula
for the Trapezoidal Method. Can you do the same with the Simpsons Method?
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Example 16. Consider the data set A = {(2, 1), (3, 2), (4, 3), (6, 4)}.
1. Find the Interpolating polynomial by direct matrix inversion.
2. One way of finding the Lagrange polynomial is to define it as the iterative process
p(x) = p0(x)(x − x0) + q0 and p0(x) = p1(x)(x − x1) + q1 and so on. See why this
method is working and find the Interpolating Polynomial for A. Mathematica seems
to use this method.
3. Another method of finding the Interpolating Polynomial is to use the Newtons
divided differences. For x0, x1, x2 we define f [x0, x1] = f(x1)−f(x0)

x1−x0 and f [x0, x1, x2] =
f [x1,x2]−f [x0,x1]

x2−x0 and so on and the interpolating polynomial is given by p(x) = f(x0) +
f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1). Use the method in (2) to see why
the formula is working and use it to find the interpolating polynomial for A.
5. Find a polynomial (Hermite polynomial) that goes though the above points of A
and satisfying p′(1) = 0, p′(2) = 1, p′(3) = 0.
6. Propose a method to fix a function consisting of a linear combination of x, ex, sinx, cosx
to the above data.

Example 17.
1. Get the value of USD/LKR for the 1st of every month for this year 2019. (Write
the values).
2. Use the Interpolating Polynomial to predict this value on 1st November 2019,1st
December 2019 and 1st January 2020. (Write the polynomial and the predicted val-
ues. You can use a software, write the code).
3. For the data set {(xk, yk)}, k = 0, . . . , n a natural cubic spline is a twice differ-
entiable piece-wise cubic polynomial p(x) which satisfies p(xk) = yk with p′′(x0) =
p′′(xn) = 0. Let p(x) =

∑n
k=1 pk(x) where pk(x) is the part of p(x) on [xk−1, xk]

which is 0 elsewhere. Assume that pk(x) = ak(x−xk)3 +bk(x−xk)2 +ck(x−xk)+dk
and that ∆xk = xk − xk−1 = h is a constant.
Derive the formula sk+1 +4sk+sk−1 = 6

h2 (yk+1 − 2yk + yk−1) ; k = 1, . . . , n−1 where
sk = p′′(xk).
Also write the system of equations in matrix form that must be solved to find sk.
4. Use Cubic Spline to predict the same values (Write the calculated sk values, the
last cubic polynomial pn(x) and the predicted values. You can use a software, write
the code).

Mathematica 3. InterpolatingPolynomial[{{2, 1}, {3, 2}, {4, 3}, {6, 4}}, x]

7 Numerical solutions of non-linear equations of one variable

Algorithm 1. Bisection Method
1. Find a0, b0 such that f(a0) and f(b0) are of different sine(say f(a0) < 0 and
f(b0) > 0).
2. k = 0.
3. xk = ak+bk

2
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4. If f(xk) = 0 then stop and return xk
If f(xk) < 0 then ak+1 = xk and bk+1 = bk
If f(xk) > 0 then bk+1 = xk and ak+1 = ak
5. If Stopping Condition(e.g. |f(xk)| or |bk − ak| or k less than a given number) is
True then stop and return xk
6. k ← k + 1 and goto 3

Theorem 33. Convergence of the Bisection Method
1. f : [a, b]→ R
2. f is continuous (ie.f ∈ C).
3. a0, b0 ∈ [a, b] and we select ak, bk, xk for k ≥ 0 according to the above algorithm.
Then
1. limk→∞ xk = limk→∞ ak = limk→∞ bk = z ∈ [a, b] is a root of f .

2. |xk − z| ≤ 1
2 |bk − ak| =

(
1
2

)k+1 |b0 − a0| ≤
(

1
2

)k+1 |b− a|

Casio 3. Bisection Method
ALPHA X ALPHA = ( ALPHA A + ALPHA B ) ÷ 2 ALPHA : ALPHA X-e� -
ALPHA X CALC

Mathematica 4. Bisection Method
Algorithm
f[x ]:=x-E(̂-x);a = 0; b = 1; For[k = 0, k <= 19, k++, {x = (a + b)/2, Print[N[k,
a, b, x, f[x], Abs[a - b]/2, 10]], If[f[x] == 0, k = 20, If[f[x] > 0, b = x, a = x]]}]

Builtin function
FindRoot[f[x] == 0, {x, 0}], by iterations starting x0 = 0

Theorem 34. f : A→ R
f ∈ C1(A) ⇒ f ∈ LC(A) when A is closed with L = max{|f ′(x)| : x ∈ A} using
Mean Value and Extreme Value theorems on f ′.

Definition 8. Cauchy Sequence and Completeness.
Let un : N→ A be a sequence.
1. un is converging on A iff ∃a ∈ A,∀ε > 0,∃N > 0,∀n > 0;n > N ⇒ |un − a| < ε
2. un is a Cauchy sequence on A iff ∀ε > 0,∃N > 0,∀n,m > 0;m,n > N ⇒
|um − un| < ε
3. A is Complete iff Every Cauchy sequence on A is converging to a point of A.

Theorem 35.
1. All converging sequences are Cauchy.
2. Q is not complete. Take un = 1 + 1

1! + 1
2! + · · ·+ 1

n! → e as n→∞.
3. Rn is complete.
4. A closed subset of a complete space is complete.
5. A complete space is closed.

Definition 9.
1. g is a Contraction iff it is Lipchitz continuous with Lipchitz constant L < 1.
2. z id a Fixed Point of g iff z = g(z)
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Theorem 36. Global Convergence of the Fixed Point method(Banach Fixed Point
Theorem)
1.g : [a, b]→ [a, b] i.e. g([a, b]) ⊂ [a, b]
2.g is a contraction with Lipschitz constant L
3.x0 ∈ [a, b] and xk+1 = g(xk), k ≥ 0
Then
1.limk→∞ xk = z ∈ [a, b] is a unique fixed point of g
2.|xk − z| ≤ Lk

1−L|x1 − x0| ≤ Lk

1−L|b− a|
Theorem 37. Local convergence of the Fixed Point method
Let z = g(z) be a fixed point. If g ∈ C1 with |g′(z)| < 1, then there exists a
neighbourhood of z such that the fixed point method is converging.
Note that z = g(z) and g ∈ C implies that there is a neighbourhood of z that the
condition 1. is met.

Algorithm 2. Fixed Point Method
1. Select x0

2. k = 0.
3. xk+1 = g(xk)
4. If Stopping Condition(e.g. |f(xk)| or or k less than a given number) is True then
stop and return xk
5. k ← k + 1 and goto 3.

Example 18. Consider the equations x = e−x and x5 − x − 1 = 0. For each case
1.Find intervals that contains real roots.
2.Find number of iterations needed to find each root to an accuracy of 0.0001 using
each of the methods Bisection/Fixed Point
3.Do the iterations and find all real roots.

Example 19. Let Tn(x) =
∑n

k=1
(−x)k

k! be the n th degree Taylor polynomial of e−x at
x = 0 and limx→∞ Tn(x) = e−x. Solve x = T2(x) and find an approximate solution
to x = e−x. Also find a n for which the difference in the solutions to x = Tn(x) and
x = e−x is less than 0.001. Assume that one real solution to x = Tn(x) remain in
[0.5, 0.61] for all n ≥ 2.

Example 20. Find the global maximums of
1. w(x) on [2, 6]. w(x) = (x− 2)(x− 3)(x− 4)(x− 6)
2. f ′′(x) on [0, 1]. f(x) = e−x

2

, sin(x2)
3. f (4)(x) on [0, 1]. f(x) = e−x

2

, sin(x2)

Casio 4. Fixed Point Method
ALPHA X ALPHA = e� -ALPHA X CALC =

Mathematica 5. Fixed Point Method
Algorithm
g[x ]:=E(̂-x);x = 0; For[k = 0, k <= 19, k++, {x = g[x], Print[N[{k, x, Abs[x -
g[x]]}, 10]]}]
Builtin function
FindRoot[f[x] == 0, {x, 0}], by iterations starting x0 = 0
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Note 7. See the note AllRoots.pdf on finding the complex roots of x5 − x − 1 = 0
using the Fixed Point method.

Definition 10. Newton’s method for finding roots of f(x) = 0

xk+1 = xk − f(xk)
f ′(xk)

Note 8. We can analyze the Newtons method as a Fixed Point Method with g(x) =

x − f(x)
f ′(x) when f ′(x) 6= 0. Then g′(x) = f(x)f ′′(x)

(f ′(x))2 indicates that local convergence is
guaranteed.

Theorem 38. Local convergence of the Newton’s Method
Let z be a root of f. If f ∈ C2 and f ′(z) 6= 0 then there exists a neighbourhood of z
where the Newton’s method is converging.

Theorem 39. Global convergence of the Newton’s method(Newton-Kantorovich The-
orem, see Proofs.pdf for the proof)
1.f : [a, b]→ R
2.f ′ 6= 0 and there exists β > 0 such that 1

|f ′(x)| ≤ β

3.f ′ is Lipschitz continuous with constant γ
4.x0 ∈ [a, b] and xk+1 = xk − f(xk)

f ′(xk) , k ≥ 0

5.
∣∣∣ f(x0)
f ′(x0)

∣∣∣ = α

6.q = αβγ < 1
2

7.[x0 − 2α, x0 + 2α] ⊂ [a, b]
Then
1. limk→∞ xk = z ∈ [x0 − 2α, x0 + 2α] is a unique root of f
2. |xk − z| ≤ 2αq2k−1

Example 21. Consider the Newton’s method of finding the real roots of x−e−x and
x5 − x− 1 = 0
1. Treat the method as an fixed point method and find the no of iterations needed to
calculate the root to an accuracy of 10−4 and find the root.
2. Use the error formula above for the Newton’s method and find the no of iterations
needed to calculate the root to an accuracy of 10−4 and find the root.
3.Use more terms in the Taylor series(instead of 2 terms used in the Newton’s
method) and propose a possibly faster method to find the root.
4. If f was not differentiable, propose a method which uses the secant(instead of the
tangent) joining two successive points.
5. Try to find complex roots using the Newton’s method(see Note 3).

Example 22.
1. Do Example 5 for sinx = 2x and x = e−x

2. Try to solve xm = 0 for m ∈ R. What is going wrong/right?.
3. Show that the sequence xk+1 = xk

2 + a
2xk

converges to
√
a, provided we select x0 on

a suitable range. What is such a range?
4. Suppose we want to solve tan−1x = 0 by the Newton’s method. Find the value z
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such that the Newton’s method is converging for 0 < x0 < z, diverging for x0 > z
and enters into a cycle for x0 = z.
5. Your CASIO calculator can integrate,

∫ b
a f(x)dx is evaluated as

∫
(f(x), a, b).

Find the z value for which P (x < z) = 0.8 when X ∼ N(0, 1), ie when X is
Normally distributed with mean 0 and standard deviation 1 which is having a PDF

p(x) = 1√
2π
e−

x2

2 .
6. Find the height of the circular sector with arc length 2x and chord length x.
7. What is the height if the shape is a parabola?

Example 23. An iterative method of finding solutions to a non-linear equation
f(x) = 0 is said to have a convergence of order p iff |xk+1− z| ≤ r|xk− z|p where xk
is the kth iteration, z is the solution and r is a constant. Show that p = 1 for the
fixed point method and p = 2 for the Newton?s method.

Casio 5. Solving cubic x3 + 2x2 + 3x+ 4 = 0 with roots x1, x2, x3

MODE 5:EQN 4:ax3 + bx2 + cx+ d 1 = 2 = 3 = 4 == x1 = x2 = x3

Mathematica 6.
NRoots[x5 − x− 1 == 0, x]
NSolve[f [x] == 0, x]
FindRoot[f [x] == 0, {x, x0}]

8 Bivariable Real Analysis

Definition 11. Functions of two variables f : A ⊆ R2 → R

Example 24. Draw the graphs of the following functions
1. f(x, y) = x2 + y2 2. f(x, y) =

√
x2 + y2 3. x2

4 + y2

9 −
z2

16 = 1

Definition 12. Limit
lim(x,y)→(a,b) f(x, y) = L⇔
∀ε > 0∃δ > 0∀(x, y), 0 < d((x, y), (a, b)) < δ ⇒ |f(x, y)− L| < ε

Note 9. Matric
d : R2 → [0,∞) is a distance measuring function, called a Matric in R2. Some
options are
1.
√

(x− a)2 + (y − b)2 2. |x− a|+ |y − b| 3. max{|x− a|, |y − b|}
One can show all these are matrics.We will use the first matric.
0 < d((x, y), (a, b)) < δ is an open set(without its boundary) around and excluding
(a, b). Such a set is called a deleted neighbourhood which we write in short as dnbd.

Example 25. Use the definition to show that lim(x,y)→(2,3) xy = 6

Theorem 40.
If lim(x,y)→(a,b) f(x, y) = L, limx→a f(x, y) = g(y) in a dnbd of b and limy→b f(x, y) =
h(x) in a dnbd of a, Then limx→a h(x) = limy→b g(y) = L.

Proof.
Let ε > 0, then lim(x,y)→(a,b) f(x, y) = L implies ∃δ > 0,∀(x, y);
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0 <
√

(x− a)2 + (y − b)2 < δ ⇒ |f(x, y)− L| < ε/2.
limx→a f(x, y) = g(y) in a dnbd of b implies ∃δ1, whenever 0 < |y − b| < δ1,
∃δ2(y) > 0∀x such that 0 < |x− a| < δ2(y)⇒ |f(x, y)− g(y)| < ε/2
Let δ3(y) = min{δ2(y), δ/

√
2} > 0 and δ4 = min{δ1, δ/

√
2} > 0

Now when 0 < |y − b| < δ4 select x such that 0 < |x− a| < δ3(y). Then
0 < |x− a| < δ2(y) so |f(x, y)− g(y)| < ε/2.
We also have 0 < |x−a| < δ/

√
2 and 0 < |y−b| < δ/

√
2 so 0 <

√
(x− a)2 + (y − b)2 <

δ which implies |f(x, y)− L| < ε/2.
Now |g(y)− L| ≤ |f(x, y)− g(y)|+ |f(x, y)− L| < ε which means
L = limy→b g(y) = limy→b limx→a f(x, y)
In the same way we can prove L = limx→a h(x) = limx→a limy→b f(x, y)

Note 10.
When the one variable limits exist, but the iterated limits are different, this theorem
can be used to show that the double limit does not exist in R.
For example let f(x, y) = x−y

x+y for (x, y) 6= (0, 0). Then limx→0 f(x, y) = −1 = g(y)
exists in a dnbd of 0 and limy→0 g(y) = −1. Also limy→0 f(x, y) = 1 = h(x) exists in
a dnbd of 0 and limy→0 h(x) = 1. Therefore lim(x,y)→(a,b) f(x, y) does not exist in R.

Theorem 41.
If lim(x,y)→(a,b) f(x, y) = L and limx→a g(x) = b then limx→a f(x, g(x)) = L

Proof. Let ε > 0, then lim(x,y)→(a,b) f(x, y) = L implies ∃δ > 0,∀(x, y);

0 <
√

(x− a)2 + (y − b)2 < δ ⇒ |f(x, y)− L| < ε.
limx→a g(x) = b implies ∃δ1 > 0∀x, 0 < |x− a| < δ1 ⇒ |g(x)− b| < δ/

√
2

Let δ3 = min{δ1, δ/
√

2} > 0.
Now if 0 < |x−a| < δ3 we have 0 < |x−a| < δ/

√
2 and |y−b| < δ/

√
2 where y = g(x).

Therefore we have 0 <
√

(x− a)2 + (y − b)2 < δ which implies |f(x, g(x))−L| < ε.
This means limx→a f(x, g(x)) = L.

Note 11.
If g is continuous such that g(a) = b we get limx→a g(x) = g(a) = b which is a
required condition.
If we can find two different functions g, h such that limx→a g(x) = b = limx→a h(x)
but if limx→a f(x, g(x)) 6= limx→a f(x, h(x)) this means the double limit does not ex-
ist in R.
For example let f(x, y) = xy

x2+y2 for (x, y) 6= (0, 0). Let g(x) = mx which gives
limx→a g(x) = 0. But limx→0 f(x, g(x)) = m

1+m2 , so the answer depends on m. There-
fore lim(x,y)→(a,b) f(x, y) does not exist in R.

Example 26. Investigate the existence of the limit, lim(x,y)→(0,0) for the following
functions.

1. f(x, y) =

{
x2−y2
x2+y2 , (x, y)= (0, 0)

0 , (x, y) = (0, 0)
2. f(x, y) =

{
xy

x2+y2 , (x, y) 6= (0, 0)

0 , (x, y) = (0, 0)
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3. f(x, y) =

{
x2y2

x2y2+(x−y)2 , (x, y) 6= (0, 0)

0 , (x, y) = (0, 0)
4. f(x, y) =

{
x sin 1

y , y 6= 0

0 , y = 0

Definition 13. Continuity of f at (a, b) i.e. f ∈ C(a, b)
lim(x,y)→(a,b) f(x, y) = f(a, b)

Definition 14. Partial Derivatives
fx(a, b) = f1(a, b) = ∂f

∂x(a, b) = limx→a
f(x,b)−f(a,b)

x−a = lim∆x→a
f(a+∆x,b)−f(a,b)

∆x

fy(a, b) = f2(a, b) = ∂f
∂y (a, b) = limy→b

f(a,y)−f(a,b)
y−b = lim∆y→b

f(a,b+∆y)−f(a,b)
∆y

Definition 15. f ∈ C1 ⇔ fx ∈ C and fy ∈ C

Theorem 42. Mean Value Theorem
1. f : D→ R,D = {(x, y)|(x− a)2 + (y − b)2 < δ2}
2. fx and fy exists on D
3. ∆x2 + ∆y2 < δ2

Then
1. f(a+ ∆x, b+ ∆y) = f(a, b) + ∆xfx(a+ θ∆x, b) + ∆yfy(a+ ∆x, b+ α∆y)
2. 0 < θ, α < 1

Definition 16. Differentiability of f at (a, b) i.e. f ∈ D(a, b)
1. fx, fy exists at (a, b)
2. There exists δ > 0 and a function φ such that for all

√
∆x2 + ∆y2 < δ we have

f(a+ ∆x, b+ ∆y) = f(a, b) + ∆xfx(a, b) + ∆yfy(a, b) + φ(∆x,∆y) and

3.lim(∆x,∆y)→(0,0)
φ(∆x,∆y)√

∆x2+∆y2
= 0.

Note 12. Frechet Derivative

If we write hhh =

(
∆x
∆y

)
and aaa =

(
a
b

)
, we have f(aaa+hhh) = f(aaa) + f ′(aaa)hhh+ φ(hhh) and

lim||hhh||→0
f(aaa+hhh)−f(aaa)−f ′(aaa)hhh

||hhh|| = lim||hhh||→0
φ(hhh)
||hhh|| = 0 where f ′(aaa) = ∇f(aaa) = (fx(aaa), fy(aaa)).

Such f ′(aaa) are called Frechet Derivatives. In 2D it is called the Gradient.

Theorem 43. f ∈ C1 ⇒ f ∈ D ⇒ f ∈ C

Example 27. Let f(x, y) = g(
√
x2 + y2), g(x) = x sin 1

x , g(0) = 0. Show that f ∈ D
but f /∈ C1

Theorem 44. Chain Rule. f = f(x, y) ∈ C1.
1. If y = y(t), x = x(t) ∈ C1 then df

dt = ∂f
∂x

dx
dt + ∂f

∂y
dy
dt

2. y = y(u, v), x = x(u, v) ∈ C1 then ∂f
∂u = ∂f

∂x
∂x
∂u + ∂f

∂y
∂y
∂u and ∂f

∂v = ∂f
∂x

∂x
∂v + ∂f

∂y
∂y
∂v

Note 13. The above may be written as

df
dt =

(
∂f
∂x

∂f
∂y

)(dx
dt
dy
dt

)
= ∂f

∂(x,y)
∂(x,y)
∂t and ∂f

∂(u,v) =
(
∂f
∂x

∂f
∂y

)(∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
= ∂f

∂(x,y)
∂(x,y)
∂(u,v)

With xxx =

(
x
y

)
and uuu =

(
u
v

)
, the above may also be written as

(f ◦ xxx)′(t) = (f ′ ◦ xxx)(t)xxx′(t) and (f ◦ xxx)′(uuu) = (f ′ ◦ xxx)(uuu)xxx′(uuu)
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We also see that
(
∂f
∂x

∂f
∂y

)
= ∂f

∂(x,y) = f ′(xxx) is acting as the true derivative of

f = f(x, y). Therefore it is called the Gradient of f or ∇f = gradf

The determinant, det ∂(x,y)
∂(u,v) =

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ is called the Jacobian

Definition 17. Directional Derivative of f in the direction of the non-zero unit
vector uuu = (u, v) at aaa = (a, b) is Duuuf(a, b) = lim∆t→0

f(a+u∆t,b+v∆t)−f(a,b)
∆t

Theorem 45. f ∈ C1,∇f(a, b) 6= 000
1. Duuu(a, b) = ∂f

∂x(a, b)u+ ∂f
∂y (a, b)v = ∇f(a, b)uuu

2. maxuuuDuuuf(a, b) = D ˆ∇f(a,b)
f(a, b) = ||∇f(a, b)||

3. minuuuDuuuf(a, b) = D ˆ−∇f(a,b)
f(a, b) = −||∇f(a, b)||

Theorem 46. For the surface f = f(x, y) ∈ C1 at (a, b)
1. Normal vector : nnn(a, b) = (fx(a, b), fy(a, b),−1) = (∇f(a, b),−1)
2. Equation of the Tangent Plane:

z = f(a, b)+fx(a, b)(x−a)+fy(a, b)(y−b) = ∇f(a, b)

(
x− a
y − b

)
= f(aaa)+∇f(aaa)(xxx−aaa)

Example 28. Let f(x, y) = x4 + y4 − x2 − y2 + 1. At (1, 2) find
1. Direction at which the function is increasing most rapidly
2. Directional derivative in that direction
3. Equation of the tangent plane

Example 29. Assume that all functions are C1

1. Show that if x = x(u, v), y = y(u, v), u = u(r, s), v = v(r, s) then
∂(x,y)
∂(r,s) = ∂(x,y)

∂(u,v)
∂(u,v)
∂(r,s)

2. Show that if u = f(x, y), v = g(x, y) then a functional relation of the form
h(u, v) = 0 exists iff the Jacobian is identically zero.

Definition 18. Higher Order Derivatives
fxx = (fx)x = ∂

∂x(∂f∂x) = ∂2f
∂x2

fxy = (fx)y = ∂
∂y(

∂f
∂x) = ∂2f

∂y∂x

fyx = (fy)x = ∂
∂x(∂f∂y ) = ∂2f

∂x∂y

fyy = (fy)y = ∂
∂y(

∂f
∂y ) = ∂2f

∂y2

Note 14.
1. We write f ∈ C2 to mean that fxx, fxy, fyx, fyy ∈ C
2. In a similar manner we write f ∈ Cn to mean that all the n th order partial
derivatives are continuous. There are 2n of them.
3. There are nCm = n!

m!(n−m)!, n th order partial derivatives that contains x,m times.

Example 30. Let f(x, y) =

{
xy x

2−y2
x2+y2 , (x, y)= (0, 0)

0 , (x, y) = (0, 0)

Show that fxy(0, 0) 6= fyx(0, 0)

Theorem 47. f ∈ C2 ⇒ fxy, fyx ∈ C ⇒ fxy = fyx
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Proof. Let φ(y) = f(a+ ∆x, y)− f(a, y) = ∆xfx(a+ α∆x, y)
Then φ(b+ ∆y)−φ(b) = f(a+ ∆x, b+ ∆y)− f(a, b+ ∆y)− f(a+ ∆x, b) + f(a, b) =
∆yφ′(b+ β∆y) = ∆y∆xfxy(a+ α∆x, b+ β∆y)
Let ψ(x) = f(x, b+ ∆y)− f(x, b) = ∆yfy(x, b+ γ∆y)
Then ψ(a+∆x)−φ(a) = f(a+∆x, b+∆y)−f(a+∆x, b)−f(a, b+∆y)+f(a, b) =
∆xψ′(a+ δ∆x) = ∆x∆yfyx(a+ δ∆x, b+ γ∆y)
So we have fxy(a+α∆x, b+β∆y) = fyx(a+ δ∆x, b+ γ∆y) and letting (∆x,∆y)→
(0, 0) we get fxy(a, b) = fyx(a, b)

Example 31. If u = u(x, y) ∈ C2 then prove that the Laplace operator ∇2u =
∂2u
∂x2 + ∂2u

∂y2 can be written as ∇2u = ∂2u
∂r2 + 1

r
∂u
∂r + 1

r2
∂2u
∂θ2

Theorem 48. Taylor series of f : R2 → R, f ∈ Cn+1 at (a, b).
f(a+ h, b+ k) =

∑n
m=0

1
m!D

mf(a, b) + 1
(n+1)!D

n+1f(a+ θh, b+ θk)

where D = h ∂
∂x + k ∂

∂y , D
m = D(Dm−1), D0 = 1 and θ ∈ (0, 1)

Note 15. When n = 2 we may write the above as
f(a + h) = f(a) +∇f(a)h + 1

2h
THf(c)h

where ∇f = (fx, fy) is the Gradient and Hf =

(
fxx fxy
fyx fyy

)
is the Hessian.

and a =

(
a

b

)
,h =

(
h

k

)
, c = a + θh, θ ∈ (0, 1).

Note that the first two terms are the Tangent Plane at a.

Also hTHf(c)h = h2fxx(c)+2hkfxy(c)+k2fyy(c) = k2fxx(c)

((
h
k +

fxy(c)
fxx(c)

)2

+ detHf(c)
(fxx(c))2

)
if fxx(c) 6= 0. Note that detHf = fxxfyy − fxyfyx = fxxfyy − (fxy)

2 when f ∈ C2.
Also trHf = fxx + fyy is the Trace of the matrix Hf .

Then
f : R2 → R, f ∈ C2. ∇f(a) = 0.
trHf(a) > 0 and detHf(a) > 0
⇔ fxx(a) > 0 and detHf(a) > 0
⇒ fxx(c) > 0 and detHf(c) > 0, for sufficiently small h
⇒ f(a + h)− f(a) = 1

2h
THf(c)h > 0, for sufficiently small h

Definition 19.
1. f has a relative minimum at a iff f(a) > f(a + h) in a nbd of a.
2. f has a relative maximum at a iff f(a) < f(a + h) in a nbd of a.
3. f has a saddle point at a iff both f(a) > f(a+h) and f(a) < f(a+h) in a nbd
of a.

Theorem 49. f ∈ C2 and ∇f(a) = 0
1. If detHf(a) > 0 and trHf(a) > 0 then a is a local minimum of f .
2. If detHf(a) > 0 and trHf(a) < 0 then a is a local maximum of f .
3. If detHf(a) < 0 then a is a saddle point of f .

Definition 20. a is a Critical Point of f iff ∇f(a) is 0 of undefined
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Example 32. Find the critical points and determine the nature(max/min/saddle)
of them
1. f(x, y) = x3 − 12x+ y3 − 27y + 5
2. f(x, y) = x4 + y4 − x2 − y2 + 1
3. f(x, y) = x4 + y4

4. Propose a method if detHf = 0 when ∇f = 0

Theorem 50. Implicit Function Theorem
Let f(x, y) ∈ C1 , fy(a, b) 6= 0 and f(a, b) = c. Then there exists a unique function

y = g(x) ∈ C1 defined on a nbd of (a, b) with g′(x) = −fx(x,g(x))
fy(x,g(x)) such that f(x, g(x)) =

c.

Proof. WLOG assume f(a, b) = c = 0 and fy(a, b) > 0. By continuity there exists
a nbd (a − δ, a + δ) × (b − δ, b + δ) of (a, b) such that fy(x, y) > 0. Now by MVT
f(a, b + δ/2) > 0 and f(a, b − δ/2) < 0. Again by continuity wrt x we have
f(x, b + δ/2) > 0 and f(x, b − δ/2) < 0 for |x − a| < δ1 < δ. Now by IVT
there exists unique y such that f(x, y) = 0 for |y − b| < δ/2. When x = a, this y is
b so y(a) = b. Now |x − a| < δ1 implies |y − b| < δ/2, which proves the continuity
of the function y = g(x).
Within a nbd of (a, b) we have f(x, g(x)) = 0 and f(x+ δx, g(x+ δx)) = 0.
Now f(x+ δx, g(x+ δx))− f(x, g(x+ δx)) + f(x, g(x+ δx))− f(x, g(x)) = 0
Or δxfx(x+αδx, g(x+δx))+(g(x+δx)−g(x))fy(x, g(x)+β(g(x+δx)−g(x))) = 0

Finally g′(x) = limδx→0
g(x+δx)−g(x)

δx = −fx(x,g(x))
fy(x,g(x)) ∈ C

Theorem 51. Constrained Optimization/Lagrange Multipliers
Let f, g ∈ C1 and ∇g 6= 0. Then the maxima/minima of f(x, y) subjected to
g(x, y) = 0 are included in each of

1. det ∂(f,g)
∂(x,y) = 0 and g(x, y) = 0

2. ∇f(x, y) = λ∇g(x, y) and g(x, y) = 0

Proof. We have g ∈ C1 and WLOG assume gy 6= 0(note that if gy = 0 then gx 6= 0
since ∇g 6= 0, which means we can use x as the independent variable). By Implicit
function theorem there exists a function y = y(x) ∈ C1 such that g(x, y(x)) = 0. By
chain rule 0 = gx

dx
dx+gy

dy
dx or dy

dx = −gx
gy

. Now since f ∈ C1 we have df
dx = fx

dx
dx+fy

dy
dx =

fx − fy gxgy = 1
gy

(fxgy − gxfy) = 1
gy

det ∂(f,g)
∂(x,y) = 0⇐ det ∂(f,g)

∂(x,y) = 0

Also ∇f = λ∇g ⇔ fx = λgx and fy = λgy implies det ∂(f,g)
∂(x,y) = λgxgy − λgygx = 0

On the other hand let det ∂(f,g)
∂(x,y) = fxgy − gxfy = 0 with gy 6= 0. If gx 6= 0 too then

fx
gx

=
fy
gy

= λ means ∇f = λ∇g. However if gx = 0 then fx = 0 too so fx = λgx for

any λ. Since gy 6= 0 we can define λ =
fy
gy

, which means ∇f = λ∇g again.

Example 33.
1. Find the shortest distance from the point (1, 0) to the parabola y2 = 4x.
2. Substitute y2 = 4x or x = y2/4 and minimize the distance function in 1. as a
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function of y or x. Explain why we get/can’t get the answer in 1.
3. Find the absolute maximum/minimum of x4 + y4 − x2 − y2 + 1 on the disk
(x− 1)2 + y2 ≤ 4
4. Find the directions of the axes of the ellipse 5x2 − 6xy + 5y2 − 4x− 4y − 4 = 0

9 Least Square Polynomial

Theorem 52. Least Square Line y = ax+ b for the points (xk, yk), 1 ≤ k ≤ n
That minimizes E(a, b) =

∑n
k=1(axk + b− yk)2 is given by(∑n

k=1 x
2
k

∑n
k=1 xk∑n

k=1 xk
∑

1

)(
a
b

)
=

(∑n
k=1 xkyk∑n
k=1 yk

)
This can also be written as XTX

(
a
b

)
= XTY where

XT =

(
x1 x2 · · · xn
1 1 · · · 1

)
and Y T =

(
y1 y2 · · · yn

)
Theorem 53. Properties of the Least Square Line
With x = 1

n

∑n
k=1 xk, y = 1

n

∑n
k=1 yk, sxx = 1

n

∑n
k=1(xk − x)2 = 1

n

∑n
k=1 x

2
k − x2, and

sxy = 1
n

∑n
k=1(xk − x)(yk − y) = 1

n

∑n
k=1 xkyk − x y

We have a =
sxy
sxx

Also (x, y) is on the Least square line and therefore y = ax+ b or b = ax− y

If HE =

(
Eaa Eab

Eba Ebb

)
is the Hessian of E(a, b) we have HE = 2XTX and

detHE = EaaEbb − (Eab)
2 = 4n2sxx > 0 when xk are different and

trHE = Eaa + Ebb = 2
∑
x2
k + 2n > 0 so (a, b) is a global minimum.

Example 34. Let A = {(2, 1), (3, 2), (4, 3), (6, 4)}
1. Find the Lest Square Line for A.
2. Show that the least square parabola y = ax2 + bx+ c for the data set (xk, yk), k =
1, 2, · · · , n is given by∑x4

k

∑
x3
k

∑
x2
k∑

x3
k

∑
x2
k

∑
xk∑

x2
k

∑
xk

∑
1

ab
c

 =

∑x2
kyk∑
xkyk∑
yk


3. Find the Least Square Parabola for A

Example 35. Let A = {(1, 1), (2, 1), (3, 2), (4, 3)}
1. Find the least square polynomials of degree 0,1,2,3,4 for A if it is possible.
2. Calculate the exact error before and after finding the coefficients in each case.
3. Show that we have a unique solution when each xk is different.
4. Fit a least square function of the form y = ax+ bx3 + cx4 for A.
5. Fit a least square function of the form y = aex + b sinx+ c cosx for A.
6. Find the best combination of functions out of {1, x, x2, ex, sinx, cosx, log x} if we
are looking for a combination of 3 functions.
7. Show that the Correlation Coefficient given by r =

sxy√
sxxsyy

is a measure of the
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linearity of data in the case of the least square line.
8. Suppose we have a 3D date set B = {(1, 1, 1), (2, 1, 2), (3, 2, 3), (4, 3, 4)}. Propose
a Lagrange-type two variable polynomial and a least square plane.

Example 36. One method of finding the maximum of a multivariate function E(a, b, c)
is called the Steepest Descent Method. Here we start at a given point (a0, b0, c0) and
select the direction of the maximum slope at (a0, b0, c0). Then we follow the maxi-
mum slope direction till we get the maximum along that direction as a one variable
function say at (a1, b1, c1) and we repeat the process. Show that the maximum direc-
tions at (a0, b0, c0) and (a1, b1, c1) are perpendicular.
The function to minimize for the least square parabola in the earlier question is
E(a, b, c) = 30 − 428a + 1649a2 − 88b + 630ab + 65b2 − 20c + 130ac + 30bc + 4c2.
Write the first two steps of the Steepest Descend Method starting from (0, 0, 0)

Casio 6. CASIO fx-991ES
MODE 3:STAT 3: + cx2 2 = 3 = 4 = 6 = REPLAY UP 1 = 2 = 3 = 4 = SHIFT
STAT(1) 1:Type, 2: Data, 3:Edit, 4:Sum(1:

∑
x2, 2:

∑
x, 4:

∑
y, 5:

∑
xy, 6:

∑
x3,

7:
∑
x2y, 8:

∑
x4), 7:Reg(1:A, 2:B, 3:C)

Mathematica 7. Fit[{{2, 1}, {3, 2}, {4, 3}, {6, 4}}, {x2, x, 1}, x]

10 Ordinary Differential Equations,ODEs

Definition 21. First Order ODE dy
dx = f(x, y), y(x0) = y0

Theorem 54. Cauchy-Peano(Exiatence of solutions)
If f ∈ C then the above ODE has a C1 solution in a nbd of x0

Definition 22. f ∈ LC in y uniformly in x
iff ∃L > 0∀x∀y1, y2; |f(x, y1)− f(x, y2)| ≤ L|y1 − y2|

Theorem 55.
If ∂f

∂y ∈ C in a closed bounded set on R2 then f ∈ LC in y uniformly in x.

Theorem 56. Picard-Lindelof(Uniqueness of solutions)
If f ∈ C and f ∈ LC in y uniformly in x. Then the above ODE has a unique C1

solution in a nbd of x0

Proof. Is based on defining a sequence of functions y0(x) = y0 and yk+1(x) =∫ x
x0
f(t, yk(t))dt and use a variant of Banach-Fixed point theorem as in the case

of the Fixed Point method in root finding.

Example 37. Discuss the Existence and Uniqueness of the following ODEs.
1. dy

dx = y3, y(0) = 0

2. dy
dx = y1/3, y(0) = 0

Definition 23. Variable Separable:f(x, y) = g(x)
h(y) ; g, h ∈ C;h(y) 6= 0∫

h(y)dy =
∫
g(x)dx
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Example 38. dy
dx = ex

y , y(0) =
√

2

Solution 1. We expect trouble at y = 0.
Separating the variables and integrate,

∫
ydy =

∫
exdx⇒ y2

2 = ex + c

Substituting boundary conditions: 2
2 = 1 + c⇒ c = 0. So y2

2 = ex or y = ±
√

2ex/2.

But the only solution satisfying y(0) =
√

2 is y =
√

2ex/2. y is never 0 according to
this solution and the solution valid for all x ∈ R.

Definition 24. Homogeneous:
y = vx, v = v(x), f(x, vx) = g(v) ∈ C, g(v) 6= v, x 6= 0
dy
dx = v + xdvdx = g(v)⇒ dv

dx = g(v)−v
x : Variable Separable

Example 39. dy
dx = x2+y2

xy , y(1) = 1

Solution 2. We expect trouble at xy = 0. Put y = vx and dy
dx = d(vx)

dx = v + xdvdx =
x2+v2x2

xvx = 1+v2

v = 1
v + v so dv

dx = 1
v . Separating the variables and integrate:

∫
vdv =∫

xdx ⇒ v2

2 = x + c or y2

2x2 = x + c or y2 = 2x2(x + c). Substituting the boundary
condition: 1 = 2(1+c) we get c = −1

2. Finally y2 = 2x2(x− 1
2) = x2(2x−1). We see

that x has to be > 1/2, so y = ±x
√

2x− 1. But the only solution satisfying y(1) = 1
is y = x

√
2x− 1. As expected we have trouble at y = 0 or at x = 1

2 although x is
never 0. So the solution valid for x ∈ (1

2 ,∞).

Definition 25. Linear: f(x, y) = Q(x)− P (x)y;P,Q ∈ C
Integrating Factor: I(x) = e

∫
P (x)dx⇒ d

dx(I(x)y) = I(x)Q(x)⇒ y = 1
I(x)

∫
Q(x)I(x)dx

Example 40. dy
dx + y

x = log x, y(1) = 1

Solution 3. We can only have x > 0. The integrating factor is : I = e
∫

1
xdx =

elnx = x. We don’t have to put a constant here since it is equivalent to multiplying
the whole ODE by a constant. Now xdydx + y = d(xy)

dx = x lnx. By integrating both

sides: xy =
∫
x lnxdx = lnxx

2

2 −
∫

x2

2
1
xdx = x2

2 lnx− 1
2

∫
xdx = x2

2 lnx− x2

4 + c.
y = x

2 lnx − x
4 + c

x. Substituting the boundary conditions: 1 = 0 − 1
4 + c or c = 5

4.
y = x

2 lnx− x
4 + 5

4x. The solution is valid for x ∈ (0,∞).

Definition 26. Bournoulli: f(x, y) = Q(x)yn − P (x)y;P,Q ∈ C
z = y1−n ⇒ dz

dx = (1−n)y−n dydx = (1−n)y−n(Q(x)yn−P (x)y) = (1−n)(Q(x)−P (x)z)
So we have dz

dx + (1− n)P (x)z = (1− n)Q(x):Linear

Example 41. dy
dx + y

x = y3 lnx, y(1) = 1

Solution 4. We must have x > 0. Put z = y1−3 = y−2. We arrive at dz
dx +(−2) 1

xz =

(−2) lnx. Integrating factor I = e
∫ −2

x dx = e−2 lnx = x−2. So d(x−2z)
dx = −2x−2 lnx or

x−2z = −2
∫
x−2 lnxdx = −2(lnxx

−1

−1 −
∫

x−1

−1
1
xdx = 2

x lnx−2
∫
x−2dx = 2

x lnx+ 2
x +c

Now y−2 = 2x lnx + 2x + cx2. With the boundary condition y(1) = 1 we have
1 = 0 + 2 + c or c = −1 and y−2 = 2x(lnx + 1) − x2 finally y = 1√

2x(lnx+1−x2 )
, -ve

square root does not agree with the boundary condition. x ∈ (0, α) where α is the
root of lnx+ 1− x

2 = 0 which is 0.463922.....
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Definition 27. Exact:
M(x, y) +N(x, y)dydx = 0;N(x, y) 6= 0;M,N ∈ C1; ∂M∂y = ∂N

∂x ∈ C
Then there exists f such that ∂f

∂x = M and ∂f
∂y = N(see proof)

⇒ 0 = M +N dy
dx = ∂f

∂x
dx
dx + ∂f

∂y
dy
dx = df

dx ⇒ f = c:constant

Proof. Let ∂M
∂y = ∂N

∂x = P (x, y) ∈ C.
Then M(x, y) =

∫
P (x, y)dy and N(x, y) =

∫
P (x, y)dx

Now
∫
M(x, y)dx

=
∫ ∫

P (x, y)dydx
=
∫ ∫

P (x, y)dxdy, by Fubini’s Theorem for Double Integrals sinceP ∈ C
=
∫
N(x, y)dy = f(x, y), say Then ∂f

∂x = M and ∂f
∂y = N .

Also note that ∂2f
∂y∂x = ∂M

∂y = P and ∂2f
∂x∂y = ∂N

∂x = P .

So ∂2f
∂y∂x = ∂2f

∂y∂x automatically.

Example 42.
1. (y2 + x2) + (2xy + y)dydx = 0, y(1) = 1

2. (3x2 + 6xy2) + (6x2y + 4y3)dydx = 0

Solution 5. dy
dx = − x2+y2

y(2x+1) so we expect trouble when y = 0 and x = −1
2.

Here M = x2 + y2 = ∂f
∂x so f =

∫
y constant(x

2 + y2)dx = x3

3 + y2x + c(y). Here the
constant c(y) is a function of y since we kept y constant in the integration. Now

we have ∂f
∂y = 0 + 2yx + c′(y) = N = 2xy + y so c′(y) = y and c(y) = y2

2 + c1. So

f = x3

3 + y2x + y2

2 + c1 = c2 or y2(x + 1
2) + x3

3 = c2 − c1 = a. With the boundary

conditions y(1) = 1 we have 1(1 + 1
2) + 1

3 = a or a = 11
6 . Now y2(x+ 1

2) = 11
6 −

x3

3 or

y2 = 11−2x3

3(2x+1) or y =
√

11−2x3

3(2x+1), -ve square root does nor match the boundary condition.

As expected we have trouble at x = −1
2 and y = 0. The latter is when x3 = 11

2 or

when x = 3

√
11
2 . So the range of x is (−1

2 ,
3

√
11
2 ).

Note that we could have got the answer as follows if we knew that the above ODE is
exact. 0 = x2 +y2 +(2xy+y)dydx implies

∫
0dx =

∫
x2dx+

∫
(y2dx+2xydy)+

∫
ydy =

x3

3 +
∫ d(y2x)

dx dx+ y2

2 = x3

3 + y2x+ y2

2 = c.

Definition 28. Reducible to Exact:
M(x, y) +N(x, y)dydx = 0,M,N ∈ C1, ∂M∂y 6=

∂N
∂x ∈ C

If
(
∂M
∂y −

∂N
∂x

)
/N = g(x) is a function of x alone,

define I(x) = e
∫
g(x)dx so ∂(NI)

∂x = I ∂N∂x +NIg(x) = I ∂M∂y = ∂(MI)
∂y : Exact

If
(
∂N
∂x −

∂M
∂y

)
/M = h(y) is a function of y alone,

define J(y) = e
∫
h(y)dy so ∂(MJ)

∂y = J ∂M∂y +MJh(y) = J ∂N∂x = ∂(NJ)
∂x : Exact

Example 43.
1. (x3 + y3)− xy2 dy

dx = 0

2. y − (2x+ y)dydx
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Solution 6. dy
dx = x3+y3

xy2 . Again we expect trouble when x = 0 or y = 0.

Here M = x3 + y3 and ∂M
∂y = 3y2. Also N = −xy2 and ∂N

∂x = −y2, so ∂M
∂y 6=

∂N
∂x .

But (∂M∂y −
∂N
∂x )/N = (3y2 + y2)/(−xy2) = − 4

x = g(x) is a function of x only. Now

I = e
∫
− 4
xdx = e−4 lnx = x−4. This means that the original ODE is lagging a factor of

x−4 to be an Exact ODE. Multiplying by it we arrive at: x−1 + y3x−4−x−3y2 dy
dx = 0.

Multiplying by −3 we see that −3x−1 − 3x−4y3 + x−43y2 dy
dx = 0 or −3 d

dx(lnx) +
d
dx(x−3y3) = 0. Finally we have −3 lnx + x−3y3 = c. With the boundary conditions
y(1) = 1 we have 0 + 1 = c or c = 1 and y3 = x3(1 + 3 lnx) or y = x 3

√
1 + 3 lnx.

We need x > 0 for lnx to be defined and need 1 + 3 lnx 6= 0 or x 6= e−1/3 for dy
dx to

exist. The latter corresponds to y 6= 0. So the range of x is (e−1/3,∞).

Definition 29. Second Order ODE: d2y
dx2 = f(x, y, dydx), y(x0) = y0, y

′(x0) = y′0

Definition 30. Second Order Linear ODE:
d2y
dx2 + p(x)dydx + q(x)y = r(x), y(x0) = y0, y

′(x0) = y′0
d2y
dx2 + p(x)dydx + q(x)y = 0 is called the Homogeneous Equation and
d2y
dx2 + p(x)dydx + q(x)y = r(x) is called the Non-Homogeneous Equation

Theorem 57.
1. If p, q, r ∈ C then the above ODE has a unique solution in a nbd of x0

2. The solution can be expressed as y = yc + yp
3. The Complimentary/Fundamental Solution yc is the solution for the correspond-
ing Homogeneous Equation.
4. It can be expressed as yc = au(x) + bv(x) where a, b are constants and u, v are
the Fundamental Solutions which are Linearly Independent, i.e.
∀(a, b)[∀x(au(x) + bv(x) = 0)⇒ (a, b) = (0, 0)]
5. Note that u, v satisfy the Homogeneous equation on their own so is their Linear
Combination au(x) + bv(x)
6. Particular Solution yp is the solution for the corresponding Non-Homogeneous
Equation. It does not have an arbitrary constants as in the case of yc.
7. None of u(x), v(x), yp(x) are unique. We can have u(x) in v(x) and wise-versa
in a way that the new ones are linearly independent. Also we can have parts of u(x)
and v(x) in yp(x)

Definition 31. Second Order Linear ODE with constant coefficients:
d2y
dx2 + pdydx + qy = r(x); p, q are real numbers

Theorem 58.
Method 1
By substituting y = ceαx in the Homogeneous Equation we arrive at the Character-
istic Equation α2 + pα + q = (α− a)(α− b) = 0. There are three possibilities
1. a, b ∈ R, a 6= b⇒ yc = ceax + debx, u(x) = eax, v(x) = ebx

2. a, b ∈ R, a = b⇒ u(x) = eax. To get the other solution we let y = xeax and con-
firm that it satisfy the Homogeneous Equation. So v(x) = xeax and yc = ceax+dxeax

3. a, b ∈ C, a = a1+ia2 = b⇒ yc = cea1x sin a2x+dea1x cos a2x, u(x) = ea1x sin a2x, v(x) =
ea1x cos a2x
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The Particular Solution yp may be obtained by assuming a solution and confirming it.

Method 2
If α2 + pα + q = (α− a)(α− b) = α(α− b)− a(α− b) = α(α− a)− b(α− a)

We can write d2y
dx2 + pdydx + qy = d

dx(dydx − ay) − b(dydx − ay) = dz
dx − bz = r(x) and

dy
dx − ay = z or alternatively
d2y
dx2 + pdydx + qy = d

dx(dydx − by)− a(dydx − by) = dz
dx − az = r(x) and dy

dx − by = z
In either case we get two First Order Linear ODEs which can be solved to find z
and then y.

Definition 32. Reducible to Second Order Linear ODE with constant coefficients:
x2 d2y

dx2 + pxdydx + qy = r(x); p, q are real numbers

Let x = ez ⇒ xdydx = dy
dz ⇒ xd

2y
dx2 + dy

dx = d2y
dz2

1
x ⇒ x2 d2y

dx2 = d2y
dz2 −

dy
dz so

x2 d2y
dx2 + xpdydx + qy = r(x)⇒ d2y

dz2 + (p− 1)dydx + qy = r(ez): Second Order Linear ODE
with constant coefficients

Definition 33. Wronskian

W (u, v)(x) = uv′ − vu′ = det

(
u v

u′ v′

)
Theorem 59. If u, v are Fundamental Solutions to the Homogeneous Equation, then
1. W ′ + p(x)W = 0

2. W (u, v)(x) = ce−
∫
p(x)dx = W (u, v)(x0)e

−
∫ x
x0
p(t)dt

2. ∀x,W (u, v) = 0 or ∀x,W (u, v) 6= 0
3. ∃x,W (u, v)(x) 6= 0⇔ u, v are Linearly Independent.

Proof. Let W 6= 0. Then if ∀x, au(x) + bv(x) = 0 implies ∀x, au′(x) + bv′(x) = 0.

Or equivalently ∀x,
(
u(x) v(x)
u′(x) v′(x)

)(
a

b

)
=

(
0
0

)
.

Since W = uv′−vu′ 6= 0, this implies that a = b = 0, so u, v are linearly independent.
On the other hand let W = uv′− vu′ = 0. This means v′

v = u′

u or ln v = lnu+ ln c or
v = cu or 1.v+(−c)u = 0 but clearly 1 6= 0 and therefore u, v are linearly dependent.
Ot in other words, If u, v are linearly independent then W 6= 0.

Example 44.
1. Assume v(x) = a(x)u(x) and derive a method of finding a(x). Are the results
same as above?
1. We know that u(x) = eax is a solution to d2y

dx2 − 2adydx + a2y = 0. Show that
v(x) = xeax is the other Linearly Independent Solution.
2. Consider the ODE: x2y′′ + x(x + 1)y′ − y = 0. If u(x) = e−x

x is a solution, use
Wronskian to find the other linearly independent solution v(x).

Theorem 60. If u, v are fundamental solutions to the Homogeneous Equation then
1. Particular Solution can be expressed as yp = a(x)u(x) + b(x)v(x)

2.

(
u v
u′ v′

)(
a′

b′

)
=

(
0
r

)
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3. a′ = −rv
W = 1

W det

(
0 v
r v′

)
and b′ = ru

W = 1
W det

(
u 0
u′ r

)
Theorem 61. To solve y′′ + p(x)y′ + q(x)y = r(x), y(x0) = y0, y

′(x0) = y′0
y(x) = Au(x) +Bv(x) + yp(x) and y′(x) = Au′(x) +Bv′(x) + y′p(x)

So

(
u(x0) v(x0)
u′(x0) v′(x0)

)(
A
B

)
=

(
y(x0)− yp(x0)
y′(x0)− y′p(x0)

)
Or

(
A
B

)
= 1

W (x0)

(
v′(x0) −v(x0)
−u′(x0) u(x0)

)(
y0 − yp(x0)
y′0 − y′p(x0)

)
Example 45. Solve
1. d2y

dx2 − 5dydx + 6y = sinx

2. d2y
dx2 − 2dydx + y = ex

3. d2y
dx2 + y = x lnx

Solution 7. We will solve d2y
dx2 − 5dydx + 6y = sinx in all the 3 methods we dis-

cussed. We will use the integration by parts results,
∫
eax sin bxdx = eax

a2+b2 (−b cos bx+

a sin bx) + c and
∫
eax cos bxdx = eax

a2+b2 (a cos bx+ b sin bx) + c

Method 1:We write d
dx(dydx − 2y) − 3(dydx − 2y) = sinx. Let z = dy

dx − 2y so
dz
dx − 3z = sinx. Here I = e

∫
−3dx = e−3x. Now d

dx(e−3xz) = e−3x sinx or e−3xz =∫
e−3x sinxdx = e−3x

(−3)2+12 (−1 cosx − 3 sinx) + A = −e−3x

10 (cosx + 3 sinx) + A so

z = − 1
10(cosx+ 3 sinx) + Ae3x = dy

dx − 2y.

Now I = e
∫
−2dx = e−2x and d

dx(e−2xy) = −e−2x

10 (cosx + 3 sinx) + Aex. So e−2xy =

− 1
10

∫
e−2x cosxdx− 3

10

∫
e−2x sinxdx+A

∫
exdx = − 1

10
e−2x

(−2)2+12 (−2 cosx+ 1 sinx)−
3
10

e−2x

(−2)2+12 (−1 cosx− 2 sinx) + Aex + B = e−2x

50 (5 cosx+ 5 sinx) + Aex + B. Finally

y = 1
10(cosx+ sinx) + Ae3x +Be2x

Method 2: If we put y = Aeαx in y′′−5y′+6y = 0 we get 0 = Aα2eαx−5Aαeαx+
6Aeαx = Aeαx(α2 − 5α + 6) = Aeαx(α− 2)(α− 3) so α = 2, 3.
So y = Ae3x + Be2x is the solution. (Note that if the two roots are coinciding this
cannot be the solution, instead one can show that Aeαx +Bxeαx is the solution).
To get the complete solution for y′′−5y′+6y = sinx we assume y = a sinx+b cosx(it
may not be possible to guess the solution like this always). So we get sinx =
6(a sinx + b cosx) − 5(a cosx − b sinx) + (−a sinx − b cosx) = (5a + 5b) sinx +
(5b− 5a) cosx so we have 5a+ 5b = 1 and 5b− 5a = 0 or a = b. So the solution is
a = b = 1

10. Which means y = 1
10(sinx+ cosx) is the solution. Finally the complete

solution is y = Ae3x +Be2x + 1
10(sinx+ cosx).

Method 3: Using Wronskian(This method works even when the coefficients are
not constants). This needs one solution, say u(x) = e2x to y′′− 5y′+ 6y = 0 to start
with. To get the other linearly independent solution v(x) we solve W ′ + p(x)W =
W ′ − 5W = 0. So

∫
W ′

W dx =
∫

5dx or lnW = 5x + ln c or W = ce5x. But W =
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uv′ − vu′ = e2xv′ − v2e2x = ce5x. We have v′ − 2v = ce3x. Here I = e
∫
−2dx = e−2x

so d
dx(e−2xv) = ce3xe−2x or e−2xv = c

∫
exdx = cex + c1 or v = ce3x + c1e

2x. We
can let v(x) = e3x. This means that the complete solution to y′′ − 5y′ + 6y = 0 is
y = Au(x) +Bv(x) = Ae2x +Be3x.
Now to get the complete solution for y′′−5y′+6y = sinx, we assume y = a(x)u(x)+
b(x)v(x) where a(x), b(x) are functions to be determined. We have shown above that

a′(x) = −v(x)r(x)
W and b(x) = u(x)r(x)

W . Here r(x) = sinx and W = uv′−vu′ = e2x3e3x−
e3x2e2x = e5x. Now a′(x) = −e3x sinx

e5x = −e−2x sinx or a(x) = −
∫
e−2x sinxdx =

− e−2x

(−2)2+12 (−1 cosx− 2 sinx) + A = e−2x

5 (cosx+ 2 sinx) + A.

Also b′(x) = e2x sinx
e5x = e−3x sinx or b(x) =

∫
e−3x sinxdx = e−3x

(−3)2+12 (−1 cosx −
3 sinx) +B = −e−3x

10 (cosx+ 3 sinx) +B. Now the final solution is y = (e
−2x

5 (cosx+

2 sinx)+A)e2x+(−e−3x

10 (cosx+3 sinx)+B)e3x = 1
5(cosx+2 sinx)+Ae2x− 1

10(cosx+
3 sinx) +Be3x = Ae2x +Be3x + 1

10(cosx+ sinx)

Note 16.
1. Note that the Wroskian is W = e5x 6= 0 for any x, confirming the u(x) = e2x

and v(x) = e3x are linearly independent, i.e. one is not a scalar multiplication of
the other.
2. Note that it is correct to take linearly independent linear combination of e2x and
e3x as u(x), v(x). For example u(x) = 5e2x + 7e3x and v(x) = e2x − 4e3x.
3. Any combination of e2x and e3x can be in yp. For example yp = 1

10(cosx+sin x)+
6e2x − e3x.
4. To solve y′′ − 5y′ + 6y = sinx, y(0) = 0, y′(0) = 0.
We know y(x) = Ae2x +Be3x + 1

10(cosx+ sinx) so y(0) = A+B + 1
10 = 0 and

y′(x) = 2Ae2x + 3Be3x + 1
10(− sinx+ cosx) so y′(0) = 2A+ 3B + 1

10 = 0
Then we have B = 1

10 and A = − 2
10.

Therefore the final solution is y = −1
5e

2x + 1
10e

3x + 1
10(cosx+ sinx).

5.Note that the Wronskian at 0 is W (0) = e5(0) = 1 6= 0 has enabled us to find the
coefficients A,B in the above solution.

Example 46.
1. Show that u(x) = x is a solution to y′′ − xy′ + y = 0.
2. Find the other linearly independent solution v(x) and express it interms of well-
known function and the complex error function given by erfi(x) = 2√

π

∫ x
0 e

t2dt.

3. Solve y′′ − xy′ + y = 1 and express the solution by well-known function and the
error function.
4. Solve y′′ − xy′ + y = 1, y(1) = 2, y′(1) = 3.

Example 47.
Each of the following are well-known differential equations with a parameter n which
is a positive integer. Find the intervals of x within which the solution exist. Select
one n ≥ 2 and show that the u(x) given below is actually a solution. Also find the
other linearly independent solution v(x).
1. Legendre ODE: (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0;
Legendre Polynomials: u(x) = Pn(x) = dn

dxn [(x2 − 1)n]
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2. Laguerre ODE: xy′′ + (1− x)y′ + ny = 0;
Laguerre Polynomials: u(x) = Ln(x) = ex

n!
dn

dxn [e−xxn]
Also try to find solutions directly by assuming power series of the form u(x) =∑∞

k=0 akx
k and finding ak. What is the radius of convergence?

Example 48. Consider the ODE: y′ + y = x, y(0) = 0.
1. Find the solution analytically and y(1) in decimal.
2. Consider a Numerical Solution by the Euler’s Method. Let h be the width of a
subdivision of [0, 1], xk = kh and yk is an approximation to y(xk). Consider the
1st order Taylor Series expansion of y(xk + h) at xk and show that the formula
y(k + 1) = yk + h(kh − yk) can be used for generating yk. Use this formula to
approximate the value of y(1) when h = 0.1.
3. With the same setting as above consider the 2nd order Taylor Series expansion of
y(xk+h) at xk and show that the formula y(k+1) = yk+h(kh−yk)+ h2

2 (1−(kh−yk))
can be used for generating yk. Use this formula to approximate y(1) when h = 0.1.

Mathematica 8.
DSolve[{y′′[x] + p[x]y′[x] + q[x]y[x] == r[x], y[a] == b, y′[a] == c}, x, y[x]]


