MA1023-18S3-MID-20191202-Page 3 of 6	Field:	Index:
--------------------------------------	--------	--------

B1. Let $f(x) = \frac{x^2}{e^{x-1}}$ for $x \neq 0$. Use the variable change $t = e^x - 1$ and the Taylor series $\ln(1+t) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} t^k = t - \frac{1}{2}t^2 + \frac{1}{3}t^3 - \cdots$, |t| < 1 to show that $f(x) = t - t^2 + \frac{11}{12}t^3 + \cdots = x - \frac{1}{2}x^2 + \cdots$ for x close to 0.

Can we define f(0) so that it is continuous at 0? If so find such a f(0) and deduce f'(0), f''(0). State any assumptions.

MA1023-1853-WID-20191202-Page 4 01 6 Field: Index:	MA1023-18S3-MID-20191202-Page 4 of 6	Field:	Index:
--	--------------------------------------	--------	--------

B2. Show that $\int_0^\infty \frac{x^2}{e^x - 1} dx$ is converging. State any assumptions.

Index:

C1. Write $\int_0^\infty \frac{x^2}{e^{x}-1} dx = \int_0^m \frac{x^2}{e^{x}-1} dx + \int_m^\infty \frac{x^2}{e^{x}-1} dx$. Find an upper bound for the second integral $\int_m^\infty \frac{x^2}{e^{x}-1} dx$ that is approaching 0 as $m \to \infty$. Hence find and integer m such that $\int_m^\infty \frac{x^2}{e^{x}-1} dx < \frac{10^{-4}}{2}$.

MA1023-18S3-MID-20191202-Page 6 of 6	Field:	Index:
--------------------------------------	--------	--------

C2. Assume we got m = 23 for the answer in C1. Use the error in Trapezoidal rule to find the number of divisions n needed to find $\int_0^{23} \frac{x^2}{e^{x}-1} dx$ accurate to $\frac{10^{-4}}{2}$ assuming $|f''(x)| \le 1$. Do not find this Trapeziodal approximation, but show that it will give us the value of $\int_0^\infty \frac{x^2}{e^{x}-1} dx$ accurate to 10^{-4} .