B1. Let $f(x)=\frac{x^{2}}{e^{x}-1}$ for $x \neq 0$. Use the variable change $t=e^{x}-1$ and the Taylor series $\ln (1+t)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} t^{k}=$ $t-\frac{1}{2} t^{2}+\frac{1}{3} t^{3}-\cdots \cdots,|t|<1$ to show that $f(x)=t-t^{2}+\frac{11}{12} t^{3}+\cdots \cdots=x-\frac{1}{2} x^{2}+\cdots \cdots$ for x close to 0 .

Can we define $f(0)$ so that it is continuous at 0 ? If so find such a $f(0)$ and deduce $f^{\prime}(0), f^{\prime \prime}(0)$. State any assumptions.

B2. Show that $\int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x$ is converging. State any assumptions.

C1. Write $\int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x=\int_{0}^{m} \frac{x^{2}}{e^{x}-1} d x+\int_{m}^{\infty} \frac{x^{2}}{e^{x}-1} d x$. Find an upper bound for the second integral $\int_{m}^{\infty} \frac{x^{2}}{e^{x}-1} d x$ that is approaching 0 as $m \rightarrow \infty$. Hence find and integer m such that $\int_{m}^{\infty} \frac{x^{2}}{e^{x}-1} d x<\frac{10^{-4}}{2}$.

C2. Assume we got $m=23$ for the answer in C1. Use the error in Trapezoidal rule to find the number of divisions n needed to find $\int_{0}^{23} \frac{x^{2}}{e^{x}-1} d x$ accurate to $\frac{10^{-4}}{2}$ assuming $\left|f^{\prime \prime}(x)\right| \leq 1$. Do not find this Trapeziodal approximation, but show that it will give us the value of $\int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x$ accurate to 10^{-4}.

