MA1023-Methods of Mathematics-14S2-www.math.mrt.ac.lk/UCJ-20151221-Page 1 of 11

RIEMANN INTEGRAL

Example: Use *n* equal partitions of [0,1] to estimate the "area" under the curve $f(x) = x^2$ using

- 1. left corner of the intervals
- 2. right corner of the intervals
- 3. midpoint of the interval
- 4. line joining the left and right corners of the interval

Definitions:

P is a **partition** of [a, b] iff it is a ordered set of the form $P = \{x_0, x_1, \dots, x_n\}$ with $x_0 = a, x_n = b$ and $x_{k+1} > x_k$ *P*^{*} is a **refinement** of *P* iff $P^* \supseteq P$ *P* is a **common refinement** of P_1, P_2 iff $P = P_1 \cup P_2$ $\mathcal{P}[a, b]$ is the set of all partitions of [a, b]

Definition: Upper and Lower Riemann Sums $f:[a,b] \to \mathbb{R}$ is a bounded function, $\Delta x_k = x_{k+1} - x_k$ $U(P,f) = \sum_{k=0}^{n-1} M_k \Delta x_k$ where $M_k = \sup\{f(x) | x \in [x_k, x_{k+1}]\}$ $L(P,f) = \sum_{k=0}^{n-1} m_k \Delta x_k$ where $m_k = \inf\{f(x) | x \in [x_k, x_{k+1}]\}$

Definition: Upper and Lower Riemann Integrals

 $\overline{\int_{a}^{b} f(x)dx} = \inf \{ U(P,f) | P \in \mathcal{P}[a,b] \}$ $\int_{a}^{b} f(x)dx = \sup \{ L(P,f) | P \in \mathcal{P}[a,b] \}$

Definition:

f is **Riemann Integrable** on [*a*, *b*] or $f \in \Re[a, b]$ iff $\underline{\int_a^b f(x)dx} = \overline{\int_a^b f(x)dx}$ **Riemann Integral** of *f* is the common value denoted by $\int_a^b f(x)dx$

Theorem: P^* is a refinement of P

- 1. $L(P, f) \leq L(P^*, f)$
- $2. \quad U(P^*, f) \le U(P, f)$

Theorem: $\int_{a}^{b} f(x) dx \leq \overline{\int_{a}^{b} f(x) dx}$

Theorem: $f \in \mathcal{R}[a, b]$ iff $\forall \varepsilon > 0 \exists P \in \mathcal{P}[a, b]$; $U(P, f) - L(P, f) < \varepsilon$

Theorem: If $f \in \mathcal{R}[a, b]$ and $P \in \mathcal{P}[a, b]$ such that $t_i \in [x_{i-1}, x_i]$ then $\left|\sum_{i=1}^n f(t_i)\Delta x_i - \int_a^b f(x)dx\right| < U(P, f) - L(P, f)$

Theorem: $f \in C[a, b] \Rightarrow f \in \mathcal{R}[a, b]$

Theorems: $f, g \in \mathcal{R}[a, b]$

- 1. $f + g \in \mathcal{R}[a, b]$ and $\int_a^b (f(x) + g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx$
- 2. $fg \in \mathcal{R}[a, b]$
- 3. $|f| \in \mathcal{R}[a, b]$ and $\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$
- 4. $f \le g \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$
- 5. $f \le M \Rightarrow \int_{a}^{b} f(x) dx \le M(b-a)$

6.
$$c \in [a,b] \Rightarrow f \in \mathcal{R}[a,c], f \in \mathcal{R}[c,b] \text{ and } \int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$

Definition: f(x) is **Uniformly continuous** on $I \subset \mathbb{R}$ $\forall \varepsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in I; |x_1 - x_2| < \delta \Longrightarrow |f(x_1) - f(x_2)| < \varepsilon$

Definition: f(x) is **Lipschitz continuous** on $I \subset \mathbb{R}$ $\exists L > 0, \forall x_1, x_2 \in I; |f(x_1) - f(x_2)| \le L|x_1 - x_2|$

Theorem: Lipschitz continuous \Rightarrow Uniformly continuous \Rightarrow Continuous

MA1023-Methods of Mathematics-14S2-www.math.mrt.ac.lk/UCJ-20151221-Page 2 of 11

Example: Show that $\frac{1}{x}$ is not uniformly continuous on (0,1] but x^2 is.

Theorem: Fundamental Theorem of Calculus

If $f \in \mathcal{R}[a, b]$ and there is a differentiable function F such that F' = f then $\int_{a}^{b} f(x)dx = F(b) - F(a)$

Theorem: Second Fundamental Theorem of Calculus

If $f \in \mathcal{R}[a, b]$ and $x \in [a, b]$ and $F(x) = \int_a^x f(x) dx$ then

- 1. F is continuous on [a, b].
- 2. If f is continuous at a point $x_0 \in [a, b]$ then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

Theorem: Integration by Parts

F, *G* differentiable on [*a*, *b*], $F' = f \in \mathcal{R}[a, b]$ and $G' = f \in \mathcal{R}[a, b]$ then $\int_{a}^{b} F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} f(x)G(x)dx$

Theorem: Change of Variable

g has continuous derivative *g'on* [*c*, *d*]. *f* is continous on g([c, d]) and let $F(x) = \int_{g(c)}^{x} f(t)dt, x \in g([c, d])$. Then for each $x \in [c, d], \int_{c}^{x} f(g(t))g'(t)dt$ exists and has value F(g(x)).

Theorem: Mean Value Theorem for Integrals

 $f \in \mathcal{R}[a, b]$ with $m \le f \le M$. Then $\exists c \in [m, M]$ such that $\int_a^b f(x) dx = c(b - a)$. If also $f \in \mathcal{C}[a, b]$ then $\exists x_0 \in (a, b)$ such that $\int_a^b f(x) dx = f(x_0)(b - a)$.

Definition: Improper Integrals of the first kind

Suppose $\int_{a}^{b} f(x)dx$ exists for each $b \ge a$. If $\lim_{b\to\infty} \int_{a}^{b} f(x)dx$ exists and equal to $I \in \mathbb{R}$ we say that $\int_{a}^{\infty} f(x)dx$ converges and has value IOtherwise we say that $\int_{a}^{\infty} f(x)dx$ diverges

Definition: Improper Integrals

$$\begin{aligned} \int_{a}^{\infty} f(x)dx &= \lim_{b \to \infty} \int_{a}^{b} f(x)dx, f: [a, \infty) \to \mathbb{R} \\ \int_{-\infty}^{b} f(x)dx &= \lim_{a \to -\infty} \int_{a}^{b} f(x)dx, f: (-\infty, b] \to \mathbb{R} \\ \int_{-\infty}^{\infty} f(x)dx &= \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx, f: (-\infty, \infty) \to \mathbb{R}, c \in \mathbb{R} \\ \int_{a}^{b} f(x)dx &= \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx, f: (a, b] \to \mathbb{R} \\ \int_{a}^{b^{-}} f(x)dx &= \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx, f: [a, b] \to \mathbb{R} \\ \int_{a}^{b^{-}} f(x)dx &= \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx, f: [a, c) \cup (c, b] \to \mathbb{R}, c \in (a, b) \end{aligned}$$

Example: Find $\int_{-1}^{1} \frac{1}{x^2} dx$ if it exists

Example:

Prove that if f is bounded above and increasing, then $\lim_{x\to\infty} f(x)$ is existing and finite Prove that $\int_a^{\infty} |f(x)| dx$ converges $\Rightarrow \int_a^{\infty} f(x) dx$ converges Prove that if $|f(x)| \leq Me^{ax}$, then the **Laplace Transform** of f(x), $\overline{f}(s) = \int_0^{\infty} e^{-sx} f(x) dx$ exists for all s > a.

Theorem: Comparison Test

Assume that the proper integral $\int_a^b f(x)dx$ exists for each $b \ge a$ and suppose that $0 \le f(x) \le g(x)$ for all $x \ge a$, then $\int_a^{\infty} g(x)dx$ converges $\implies \int_a^{\infty} f(x)dx$ converges

Theorem: Limit Comparison Test

Assume both proper integrals $\int_{a}^{b} f(x) dx$ and $\int_{a}^{b} g(x) dx$ exist for each $b \ge a$, where $f(x) \ge 0$ and g(x) > 0If $\lim_{x \to \infty} \frac{f(x)}{g(x)} = c$, then MA1023-Methods of Mathematics-14S2-www.math.mrt.ac.lk/UCJ-20151221-Page 3 of 11

- 1. $c \neq 0, \infty \Rightarrow \int_{a}^{\infty} f(x) dx$ converges $\Leftrightarrow \int_{a}^{\infty} g(x) dx$ converges
- 2. c = 0 and $\int_{a}^{\infty} g(x)dx$ converges $\Rightarrow \int_{a}^{\infty} f(x)dx$ converges 3. $c = \infty$ and $\int_{a}^{\infty} g(x)dx$ diverges $\Rightarrow \int_{a}^{\infty} f(x)dx$ diverges

Note: There are similar comparison tests for other improper integrals

Example: Gamma Function is defined by $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$. Show that

- 1. $\Gamma(x)$ exists for all x > 0
- 2. $\Gamma(x) = (x 1)\Gamma(x 1)$
- 3. $\Gamma(n) = (n-1)!$ for integer $n \ge 1$
- 4. we can use 2. to define $\Gamma(x)$ for x < 0
- 5. $\Gamma(x)$ does not exist for x = 0, -1, -2, -3, ...
- 6. Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ and $\int_0^\infty e^{-t^2} dt = \sqrt{\pi}$ using $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}$
- 7. Use the formula for the the *n* dimesional ball $V_n(r) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}r^n$ to find volumes of 2,3,4,5 dimesional balls
- 8. Use the fact that $\Gamma(x + 1) \sim \sqrt{2\pi x} \left(\frac{x}{\rho}\right)^x$ as mptotically as $t \to \infty$ to find 10! approximately
- 9. What is $-\Gamma'(1)$?. It is called the Euler Constant γ and no one knows if it is rational or irrational! Prove that the **Beta function** $B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$ exists for all x, y > 0. It can be shown that $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+v)}.$

MA1023-Methods of Mathematics-14S2-www.math.mrt.ac.lk/UCJ-20151221-Page 4 of 11

MULTIVARIATE CALCULUS

Definition: Function of two variables $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$

Example: Draw the graphs of the following functions/surfaces

1.
$$f(x, y) = x^{2} + y^{2}$$

2. $f(x, y) = \sqrt{x^{2} + y^{2}}$
3. $\frac{x^{2}}{4} + \frac{y^{2}}{9} - \frac{z^{2}}{16} = 1$

Definition: Limit

 $\lim_{(x,y)\to(a,b)} f(x,y) = L \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0, 0 < d((x,y), (a,b)) < \delta \Rightarrow |f(x,y) - L| < \varepsilon$

Note: Matric

 $0 < d((x, y), (a, b)) < \delta$ is a region around and excluding (a, b). Some options for the matric d are

- 1. $\sqrt{(x-a)^2 + (y-b)^2}$
- 2. |x-a| + |y-b|
- 3. $\max\{|x-a|, |y-b|\}$

We will use the first matric. One can show that they are equivalent, what is needed is a region around (a, b). **Example**: Use the definition to show that $\lim_{(x,y)\to(1,2)} x^2 y = 6$

Example: Investigate the existence of the limit, $\lim_{(x,y)\to(0,0)} f(x,y)$ for the following functions

1.
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} , & (x,y) \neq (0,0) \\ 0 , & (x,y) = (0,0) \end{cases}$$

2.
$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2y^2 + (x-y)^2} , & (x,y) \neq (0,0) \\ 0 , & (x,y) = (0,0) \end{cases}$$

3.
$$f(x,y) = \begin{cases} x\sin\frac{1}{y} , & (x,y) \neq (0,0) \\ 0 , & (x,y) = (0,0) \end{cases}$$

Theorem:

If $\lim_{(x,y)\to(a,b)} f(x,y) = L$, $\lim_{x\to a} f(x,y)$ and $\lim_{y\to b} f(x,y)$ exists then $\lim_{x \to a} \lim_{y \to b} f(x, y) = \lim_{y \to b} \lim_{x \to a} f(x, y) = L.$

Example:

Example: Use the above theorem to prove that $\lim_{(x,y)\to(0,0)} f(x,y)$ is not existing for $f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & , & (x,y) \neq (0,0) \\ 0 & , & (x,y) = (0,0) \end{cases}$. Prove by definition that if $\lim_{(x,y)\to(0,0)} f(x,y)$ along y = x and y = 2x are different, then the limit is not existing.

Definition: Continuity of f ($f \in C$) at (a, b) $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$

Definition: Partial derivatives

$$f_x(a,b) = f_1(a,b) = \frac{\partial f}{\partial x}(a,b) = \lim_{x \to a} \frac{f(x,b) - f(a,b)}{x-a} = \lim_{\Delta x \to 0} \frac{f(a+\Delta x,b) - f(a,b)}{\Delta x}$$
$$f_y(a,b) = f_2(a,b) = \frac{\partial f}{\partial y}(a,b) = \lim_{y \to b} \frac{f(a,y) - f(a,b)}{y-b} = \lim_{\Delta y \to 0} \frac{f(a,b+\Delta y) - f(a,b)}{\Delta y}$$

Definition: $f \in \mathcal{C}^1 \Leftrightarrow f_x \in \mathcal{C}$ and $f_y \in \mathcal{C}$

Theorem: Mean Value

- 1. f_x and f_y exists
- 2. $\mathbb{D} = \{(x, y) | (x a)^2 + (y b)^2 < \delta^2\} \subset A$
- 3. $\Delta x^2 + \Delta y^2 < \delta^2$
- Then 1. $f(a + \Delta x, b + \Delta y) - f(a, b) = \Delta x f_x(a + \theta \Delta x, b) + \Delta y f_y(a + \Delta x, b + \alpha \Delta y)$
- 2. $0 < \theta, \alpha < 1$

Definition: **Differentiability** of $f (f \in D)$ at (a, b)

- 1. f_x and f_y exists at (a, b)
- 2. $f(a + \Delta x, b + \Delta y) f(a, b) = \Delta x f_x(a, b) + \Delta y f_y(a, b) + \Delta x \phi(\Delta x, \Delta y) + \Delta y \psi(\Delta x, \Delta y)$ for all $\Delta x^2 + \Delta y^2 < \delta^2$ 3. $\lim_{(\Delta x, \Delta y) \to (0,0)} \phi(\Delta x, \Delta y) = \lim_{(\Delta x, \Delta y) \to (0,0)} \psi(\Delta x, \Delta y) = 0$

Theorem: $f \in \mathcal{C}^1 \Rightarrow f \in \mathcal{D} \Rightarrow f \in \mathcal{C}$

Example: Let
$$f(x, y) = g(\sqrt{x^2 + y^2}), g(x) = x \sin \frac{1}{x}, g(0) = 0$$
. Show that $f \in \mathcal{D}$ but $f \notin \mathcal{C}^1$

Definition: Higher order derivatives

 $f_{xx} = (f_x)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$ $f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$ $f_{yx} = (f_y)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$ $f_{yy} = (f_y)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} \text{ and so on }$

Note:

- 1. We write $f \in C^2$ to mean $f_{xx}, f_{xy}, f_{yx}, f_{yy} \in C$
- 2. In a similar manner we write $f \in C^n$ to mean that all the *n* th order partial derivatives are continuous. There are 2^n of them.
- 3. There are $\binom{n}{m} = {}^{n} C_{m} = \frac{n!}{m!(n-m)!}$, *n* th order partial derivatives that contains *x*, *m* times.

Example: Let

 $f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$ Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$.

Theorem: $f \in C^2 \Rightarrow f_{xy} = f_{yx}$

Example: If $u = u(x, y) \in C^2$ then prove that the **Laplace operator** $\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ becomes $\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$ when $x = r\cos\theta$, $y = r\sin\theta$.

Theorem: Chain rule

- 1. f = f(x, y), y = y(t), x = x(t) all in C^1 . Then $\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$ 2. f = f(x, y), y = y(u, v), x = x(u, v) all in C^1 . The
- 2. f = f(x, y), y = y(u, v), x = x(u, v) all in C^1 . Then $\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$ and $\frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$

Note: The above may be written as

$$\frac{\partial f}{\partial t} = \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right) \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix} = \frac{\partial f}{\partial(x,y)} \frac{\partial(x,y)}{\partial t} \text{ and } \frac{\partial f}{\partial(u,v)} = \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right) \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \frac{\partial f}{\partial(x,y)} \frac{\partial(x,y)}{\partial(u,v)}$$
The determinant, $\det \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$ is called the **Jacobian** or *J*.

With
$$\underline{x} = \begin{pmatrix} y \end{pmatrix}$$
 and $\underline{u} = \begin{pmatrix} v \end{pmatrix}$, the above may also be written as
 $(f \circ \underline{x})'(t) = (f' \circ \underline{x})(t)\underline{x}'(t)$ and $(f \circ \underline{x})'(\underline{u}) = (f' \circ \underline{x})(\underline{u})\underline{x}'(\underline{u})$

We also see that $\begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} = \frac{\partial f}{\partial(x,y)} = f'(\underline{x})$ is acting as the true first derivative of f = f(x, y). Therefore it is also called $\nabla f = \operatorname{grad} f$ or the **Gradient** of f.

Example: Assume all functions are C^1

Show that if x = x(u, v), y = y(u, v), u = u(r, s), v = v(r, s) then $\frac{\partial(x, y)}{\partial(r, s)} = \frac{\partial(x, y)}{\partial(u, v)} \frac{\partial(u, v)}{\partial(r, s)}$. Show that if u = f(x, y), v = g(x, y) then a functional relation of the form h(u, v) = 0 exists iff det $\frac{\partial(u, v)}{\partial(x, y)} \equiv 0$.

Definition: **Directional Derivative** of *f* in the direction of the unit vector $\underline{u} = (u, v)$ at (a, b). $D_{\underline{u}}f(a, b) = \lim_{\Delta t \to 0} \frac{f(a+u\Delta t, b+v\Delta t) - f(a, b)}{\Delta t}$

Theorem: $f \in C^1$, $\nabla f(a, b) \neq \underline{0}$

- 1. $D_{\underline{u}}f(a,b) = \frac{\partial f}{\partial x}(a,b)u + \frac{\partial f}{\partial y}(a,b)v = \nabla f(a,b) \cdot \underline{u}$
- 2. $\max_{u} D_{u}f(a,b) = D_{\nabla f(a,b)}f(a,b) = \|\nabla f(a,b)\|$
- 3. $\min_{\underline{u}} \overline{D_{\underline{u}}} f(a, b) = D_{-\nabla f(a, b)} f(a, b) = \|\nabla f(a, b)\|$

Theorem: Normal vector to a surface at (a, b) $\underline{n}(a, b) = (f_x(a, b), f_x(a, b), -1) = (\nabla f(a, b), -1)$

Proof: Let $\underline{r} = \underline{r}(t) = (x(t), y(t), z(t)) \in C^1$ be a curve on the surface of $z = f(x, y) \in C^1$ and $\underline{r}(t_0) = (x(t_0), y(t_0), z(t_0)) = (a, b, f(a, b))$. Note that $\underline{r}'(t_0) = (x'(t_0), y'(t_0), z'(t_0))$ is the tangent vector to the curve at (a, b). Now $\underline{n}(a, b) \cdot \underline{r}'(t_0) = f_x(a, b)x'(t_0) + f_y(a, b)y'(t_0) - z'(t_0) = \frac{df}{dt}(t_0) - z'(t_0) = 0$ le $\underline{n}(a, b) = (f_x(a, b), f_y(a, b), -1) = (\nabla f(a, b), -1)$ is a vector perpendicular to the surface z = f(x, y) at (a, b).

Theorem: Equation of the **tangent plane** to the surface $z = f(x, y) \in C^1$ at (a, b). $z = f_x(a, b)(x - a) + f_y(a, b)(y - b) = \nabla f(a, b) \begin{pmatrix} x - a \\ y - b \end{pmatrix} = \nabla f(a, b) \begin{pmatrix} x \\ y \end{pmatrix}$

Example: Let $f(x, y) = x^4 + y^4 - x^2 - y^2 + 1$. At the point (1,2) find

- 1. Direction in which the function increases most rapidly
- 2. Directional derivative in that direction
- 3. Equation of the tangent plane.

Theorem: Taylor's expansion for one variable $f: I \in \mathbb{R} \to \mathbb{R}$ If $f \in C^{n+1}$ and $a, a + h \in I$ then $f(a + h) = \sum_{m=0}^{n} \frac{1}{k!} \frac{d^m f}{dx^m}(a)h^m + \frac{1}{(n+1)!} \frac{d^{n+1} f}{dx^{n+1}}(c)h^{n+1}$ where c is between a and a + h.

Note: We can also write the above as If $f \in C^{n+1}$ and $a + th \in I$ for all $t \in [0,1]$ Then $f(a + h) = \sum_{m=0}^{n} \frac{1}{k!} \left(h \frac{d}{dx}\right)^m f(a) + \frac{1}{(n+1)!} \left(h \frac{d}{dx}\right)^{n+1} f(c)$ for some $c = a + \theta h$ with $\theta \in (0,1)$. We agree to use the notation $\left(h \frac{d}{dx}\right)^m f(a) \equiv h^m \frac{d^m f}{dx^m}(a)$

Note: The first two terms are the equation of the tangent line.

Proof: Use generalized mean value theorem on $F(t) = \sum_{m=0}^{n} \frac{1}{m!} f^{(m)}(t) (x-t)^m$ and $G(t) = (x-t)^{n+1}$

Example: When n = 1 $f(a + h) = f(a) + \frac{1}{1!}f'(a)h + \frac{1}{2!}f''(c)h^2$

Example: Write the Taylor's expansion for $f(x) = e^x$ at a = 0.

Example: Derive the second derivative test to find the extrema of f(x). What to do when f''(a) = 0?

Theorem: Taylor's for two variables $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ $f \in C^{n+1}$ and $(a + th, b + tk) \in A$ for all $t \in [0,1]$ Then $f(a + h, b + k) = \sum_{m=0}^{n} \frac{1}{k!} \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^m f(a, b) + \frac{1}{(m+1)!} \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{m+1} f(c)$ for some $c = (a + \theta h, b + \theta k)$ with $\theta \in (0,1)$.

Proof: Use Taylor'r expansion for F(t) = f(a + th, b + tk)

Example: When
$$n = 1$$

$$f(a + h, b + k)$$

$$= \sum_{m=0}^{1} \frac{1}{k!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{m} f(a, b) + \frac{1}{(1+1)!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{1+1} f(a + \theta h, b + \theta k)$$

$$= f(a, b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right) f(a, b) + \frac{1}{2!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{2} f(c)$$

$$= f(a, b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right) f(a, b) + \frac{1}{2!} \left(h^{2} \frac{\partial^{2}}{\partial x^{2}} + 2hk \frac{\partial^{2}}{\partial x \partial y} + h^{2} \frac{\partial^{2}}{\partial y^{2}} \right) f(c)$$

$$= f(a, b) + f_{x}(a, b)h + f_{y}(a, b)k + \frac{1}{2!} \left(f_{xx}(c)h^{2} + 2f_{xy}(c)hk + f_{yy}(c)k^{2} \right)$$

$$= f(a, b) + (f_{x}(a, b) - f_{y}(a, b)) \left(\frac{h}{k} \right) + \frac{1}{2!} (h - k) \left(\frac{f_{xx}(c)}{f_{yx}(c)} - \frac{f_{xy}(c)}{f_{yy}(c)} \right) \left(\frac{h}{k} \right)$$

$$= f(a, b) + \nabla f(a, b) \left(\frac{h}{k} \right) + \frac{1}{2!} (h - k)Hf(c) \left(\frac{h}{k} \right)$$

Note: The first two terms are the equation of the tangent plane.

Definition: $f'' = Hf = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$: **Hessian** of fdet $Hf = f_{xx}f_{yy} - f_{xy}^2$: determinant tr $Hf = f_{xx} + f_{yy}$: **trace**

Note: detHf > 0 and $f_{xx} > 0 (< 0) \Rightarrow f_{yy} > 0 (< 0) \Rightarrow trHf > 0 (< 0)$

Example:

Write the Taylor's expansion for $f(x, y) = e^{xy}$ and $f(x, y) = \sin(\sin x + xe^y)$ at (a, b) = (0,0). Get the same answer by applying multiple one variable Taylor series expansions at 0.

Definition: (a, b) is a **critical point** of $f \in C^1 \Leftrightarrow \nabla f(a, b) = \mathbf{0}$ or f is not defined

Definition:

- 1. *f* has a **relative maximum** at $(a, b) \Leftrightarrow f(a, b) \ge f(a + h, b + k)$ in a neighbourhood of (a, b)
- 2. *f* has a **relative minimum** at $(a, b) \Leftrightarrow f(a, b) \leq f(a + h, b + k)$ in a neighbourhood of (a, b)
- 3. *f* has a **saddle point** at $(a, b) \Leftrightarrow f$ is both above and below its tangent plane at (a, b).

Theorem: $f \in C^1$ and (a, b) is a relative maximum/minimum/saddle point of $f \Rightarrow \nabla f(a, b) = \mathbf{0}$

Theorem: $f \in C^2$ and $\nabla f(a, b) = \mathbf{0}$ then

- 1. detHf(a, b) > 0 and trHf(a, b) > 0 then (a, b) is a relative mimimum
- 2. detHf(a, b) > 0 and trHf(a, b) < 0 then (a, b) is a relative maximum
- 3. detHf(a, b) < 0 then (a, b) is a saddle point
- 4. detHf(a, b) = 0 inconclusive(why?)

Example: Find the critical points and determine the nature of them (relative maxima/minima/saddle points). $f(x, y) = x^3 - 12x + y^3 - 27y + 5$ $f(x, y) = x^4 + y^4 - x^2 - y^2 + 1$ $f(x, y) = x^4 + y^4$

Example: Propose a method to determine the nature of critical points when detHf = 0.

Theorem: Lagrange Multipliers

If $f, g \in C^1$ and $\nabla g \neq \mathbf{0}$ then the maxima/minima of f(x, y) subjected to g(x, y) = 0 are included in the set of solutions of $\nabla f(x, y) = \lambda \nabla g(x, y)$ and g(x, y) = 0.

Example:

Find the shortest distance from the point (1,0) to the parabola $y^2 = 4x$. Find the directions of the axes of the ellipse $5x^2 - 6xy + 5y^2 - 4x - 4y - 4 = 0$. Find the absolute maximum/minimum of $f(x, y) = x^4 + y^4 - x^2 - y^2 + 1$ on the closed disk $(x - 1)^2 + y^2 \le 4$.

ORDINARY DIFFERENTIAL EQUATIONS

Definition: 1st Order Ordinary Differential Equation $\frac{dy}{dx} = f(x, y)$

Definition/Theorem: Variable separable 1st order ODE

 $f(x, y) = \frac{g(x)}{h(y)}$ $\int h(y) dy = \int g(x) dx$

Definition/Theorem: Homogeneous 1st order ODE

 $\begin{aligned} f(x, Vx) &= g(V) \\ \frac{dy}{dx} &= V + x \frac{dV}{dx} = g(V) \Rightarrow \frac{dV}{dx} = \frac{g(V) - V}{x} : \text{ variabale separable} \end{aligned}$

Definition/Theorem: Linear 1st order ODE f(x, y) = Q(x) - P(x)yIntegrating Factor: $I(x) = e^{\int P(x)dx}$ $\frac{dy}{dx} + P(x)y = Q(x) \Rightarrow I(x)\frac{dy}{dx} + I(x)P(x)y = Q(x)I(x)$ $\Rightarrow \frac{d}{dx}(I(x)y) = I(x)Q(x) \Rightarrow y = \frac{1}{I(x)}\int I(x)Q(x)dx$

Definition/Theorem: Bernoulli 1st order ODE

 $f(x,y) = Q(x)y^n - P(x)y$ $z = y^{1-n} \Rightarrow \frac{dz}{dx} = (1-n)y^{-n} \Rightarrow \frac{dz}{dx} + (1-n)P(x)z = (1-n)Q(x)$: Linear

Example: Solve the first order ODEs $\frac{dy}{dx} = ye^{x}, \frac{dy}{dx} = \frac{x^{2}+y^{2}}{xy}, \frac{dy}{dx} - \frac{y}{x} = \ln x$

Definition/Theorem: Exact ODE

 $M(x, y) + N(x, y)\frac{dy}{dx} = 0 \text{ with } \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$ $M, N \in \mathcal{C}^1 \Longrightarrow \exists f \text{ such that } \frac{\partial f}{\partial x} = M \text{ and } \frac{\partial f}{\partial y} = N.$ So $\frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx} = 0 \text{ or } f = c \text{ is the solution}$

Definition/Theorem: Reducible to Exact ODE

Let $M(x, y) + N(x, y)\frac{dy}{dx} = 0$ with $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$. If $\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)/N = g(x)$ is a function of x alone, define $I(x) = \exp\left(\int g(x)dx\right)$. With $I(x)M(x, y) + I(x)N(x, y)\frac{dy}{dx} = 0$ we have $\frac{\partial NI}{\partial x} = I\frac{\partial N}{\partial x} + NIg(x) = I\frac{\partial M}{\partial y} = \frac{\partial MI}{\partial y}$ so new ODE is exact. If $\left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)/M = h(y)$ is a function of y alone, define $J(y) = \exp\left(\int h(y)dy\right)$. With $J(y)M(x, y) + J(y)N(x, y)\frac{dy}{dx} = 0$ we have $\frac{\partial MJ}{\partial y} = J\frac{\partial M}{\partial y} + MJh(y) = J\frac{\partial N}{\partial x} = \frac{\partial NJ}{\partial x}$ so new ODE is exact.

Example: Solve $(3x^2 + 6xy^2) + (6x^2y + 4y^3)\frac{dy}{dx} = 0$, $(x^3 + y^3) - xy^2\frac{dy}{dx} = 0$, $y - (2x + y)\frac{dy}{dx} = 0$.

Theorem: Cauchy-Peano

Let $f: R \subset \mathbb{R}^2 \to \mathbb{R}$ be continuous. Then the initial value problem $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ has a solution in R in a neighborhood of (x_0, y_0) .

Theorem: Picard -Lindelof

Let $f: R \subset \mathbb{R}^2 \to \mathbb{R}$ be continuous. Also let f be Lipschitz continuous(\mathcal{LC}) in y uniformly in x. Then the initial value problem $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ has a unique solution in R in a neighborhood of (x_0, y_0) .

Question: Investigate the nature of solutions of $\frac{dy}{dx} = \frac{3}{2}y^{1/3}$, y(0) = 0 according to the above theorems. **Theorem:** $f \in \mathcal{D} \Rightarrow (f' \in \mathcal{B} \Leftrightarrow f \in \mathcal{LC})$, \mathcal{B} : Bounded Definition: nth Order Ordinary Differential Equation

$$F\left(\frac{d^n y}{dx^n}, \frac{d^{n-1} y}{dx^{n-1}}, \cdots, \frac{dy}{dx}, y, x\right) = 0$$

Definition: 2 nd Order Ordinary Differential Equation

$$\frac{d^2y}{dx^2} = f\left(x, y, \frac{dy}{dx}\right)$$

Definition: 2nd Order Linear Ordinary Differential Equation

 $\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = r(x)$

Definition: 2nd Order Linear Ordinary Differential Equation with constant coefficients

 $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r(x)$ If $\alpha^2 + p\alpha + q = (\alpha - a)(\alpha - b) = \alpha(\alpha - b) - a(\alpha - b) = \alpha(\alpha - a) - b(\alpha - a)$ $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = \frac{d}{dx}\left(\frac{dy}{dx} - ay\right) - b\left(\frac{dy}{dx} - ay\right) = \frac{dz}{dx} - bz = r(x)$ and $\frac{dy}{dx} - ay = z$: Linear 1st ordere ODEs

Example: Solve $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = \sin x$ as two Linear 1st order ODEs

Definition/Theorem:

 $x^{2}\frac{d^{2}y}{dx^{2}} + xp\frac{dy}{dx} + qy = r(x)$ $x = e^{z} \Rightarrow x\frac{dy}{dx} = \frac{dy}{dz} \Rightarrow x\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = \frac{d^{2}y}{dz^{2}x} \Rightarrow x^{2}\frac{d^{2}y}{dx^{2}} = \frac{d^{2}y}{dz^{2}} - \frac{dy}{dz}$ $\frac{d^{2}y}{dz^{2}} - \frac{dy}{dx} + p\frac{dy}{dz} + qy = r(e^{z}) \Rightarrow \frac{d^{2}y}{dz^{2}} + (p-1)\frac{dy}{dz} + qy = r(e^{z})$: 2nd Order Linear

Definition: The solutions to $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0$ (homogeneous equation) can be obtained by substituting $y = ce^{\alpha x} \Rightarrow \alpha^2 + p\alpha + q = (\alpha - a)(\alpha - b) = 0$, charasteristic equation 1. $a, b \in \mathbb{R}, a \neq b \Rightarrow y = ce^{ax} + de^{bx}$ 2. $a, b \in \mathbb{R}, a = b \Rightarrow y = ce^{ax} + dxe^{bx}$

3. $a, b \in \mathbb{C} \Rightarrow a = a_1 + ia_2 = \overline{b} \Rightarrow y = ce^{a_1x} \sin a_2x + ce^{a_1x} \cos a_2x$

Definition/Theorem: The solutions to $\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = r(x)$, $y(x_0) = y_0$, $y'(x_0) = y'_0$ 1. Exists and unique on an interval (c, d) where $x_0 \in (c, d) \subseteq (a, b)$ and p(x), q(x), r(x) continuous on (a, b).

- 2. The solution can be expressed as $y = y_c + y_p$
- 3. $y_c = au(x) + bv(x)$ (complimentary/fundamental solution) is the solution when $r(x) \equiv 0$ (homogeneous equation) and u, v (fundamental set of solutions) are linearly independent $\forall (a,b) [\forall x (au(x) + bv(x) = 0) \Rightarrow (a,b) = (0,0)].$
- 4. y_p (particular solution) is a solution when $r(x) \neq 0$.

Example: Solve $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = \sin x$ by separately finding y_c and y_p

Definition: Wronskian

 $W(u,v)(x) = uv' - vu' = \begin{vmatrix} u & v \\ u' & v' \end{vmatrix}$

Theorem: If *u*, *v* are solutions to the homogeneous equation, the Wronskian satisfies

$$1. \quad W' + p(x)W = 0$$

- 2. $W(u,v)(x) = cexp(-\int p(x)dx) = W(u,v)(x_0)exp(-\int_{x_0}^x p(t)dt)$
- 3. $\forall x, W(u, v)(x) \neq 0 \text{ or } \forall x, W(u, v)(x) = 0$
- 4. $\exists x, W(u, v)(x) \neq 0 \Leftrightarrow u, v$ are linearly independent

Example: If e^{ax} is a solution to $\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + a^2y = 0$ find the other independent solution.

Theorem: If *u*, *v* are fundamental solutions to the homogeneous equation, then the particular solution is given by $y_p(x) = c(x)u(x) + d(x)v(x)$

MA1023-Methods of Mathematics-14S2-www.math.mrt.ac.lk/UCJ-20151221-Page 11 of 11

$$\begin{pmatrix} u & v \\ u' & v' \end{pmatrix} \begin{pmatrix} c' \\ d' \end{pmatrix} = \begin{pmatrix} 0 \\ r \end{pmatrix}; \ c' = \frac{-rv}{W} = \frac{W_1}{W}, W_1 = \begin{vmatrix} 0 & v \\ r & v' \end{vmatrix}; d' = \frac{ru}{W} = \frac{W_2}{W}, W_2 = \begin{vmatrix} u & 0 \\ u' & r \end{vmatrix}$$
$$y_p(x) = \int_{x_0}^x \frac{v(x)u(t) - u(x)v(t)}{W(u,v)(t)} r(t) dt$$

Example: Solve $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = \sin x$ using the Wronskian.

Definition: Legendre ODE: $(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$, *n* is an integer. The fundamental solutions are 1. Legendre polynomials given by $P_n(x) = \frac{d^n}{dx^n}[(x^2 - 1)^n]$: bounded solution as $x \to \pm 1$.

- 2. Legendre functions of the second kind $Q_n(x)$: unbounded solution as $x \to \pm 1$.

Example: Let n = 1. Show that $P_1(x) = x$ and find $Q_1(x)$. Hence solve the ODE with RHS=x and y(0) = 0, y'(0) = 1.

Definition: Laguerre ODE: $x \frac{d^2y}{dx^2} + (1-x) \frac{dy}{dx} + ny = 0$, *n* is an integer. The fundamental solutions are

- 1. Laguerre polynomials given by $L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} [e^{-x} x^n]$: bounded solution as $x \to 0$.
- 2. Laguerre functions of the second kind $M_n(x)$: unbounded solution as $x \to 0$.

Example: Let n = 1. Show that $L_1(x) = 1 - x$ and find $M_1(x)$. Hence solve the ODE with RHS=x and y(1) = 0, y'(1) = 1.

Definition: Bessel Equation: $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0$, *n* is an integer. The fundamental solutions are **Bessel function** of the first kind $J_n(x)$: bounded solution at x = 01.

2.

Bessel function of the second kind $K_n(x)$: unbounded solution at x = 0

Definition: Airy Equation: $\frac{d^2y}{dx^2} - xy = 0$. The fundamental solutions are

- 1. Airy function of the first kind Ai $(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt$: bounded solution as $x \to \infty$
- 2. Airy function of the second kind Bi(x): unbounded solution as $x \to \infty$