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RIEMANN INTEGRAL 

Example: Use � equal partitions of [0,1] to estimate the “area” under the curve ��	
 = 	� using 

1. left corner of the intervals  

2. right corner of the intervals  

3. midpoint of the interval 

4. line joining the left and right corners of the interval 

 

Definitions:  	is a partition of  [�, �] iff it is a ordered set of the form   = {	�, 	�,⋯ , 	�} with 	� = �, 	� = � and 	��� > 	� ∗ is a refinement of 	 iff ∗ ⊇   is a common refinement of �, � iff  = � ∪ � �[�, �] is the set of all partitions of [�, �] 
 

Definition: Upper and Lower Riemann Sums  �: [�, �] → ℝ is a bounded function, ∆	� = 	��� − 	� 

 #�, �
 = ∑ %�∆	��&��'�  where %� = sup{��	
 |	 ∈ [	� , 	���]} 
 -�, �
 = ∑ .�∆	��&��'�  where .� = inf{��	
 |	 ∈ [	� , 	���]} 
 

Definition: Upper and Lower Riemann Integrals 

 2 ��	
3	456666666666666 = inf	{#�, �
| ∈ �[�, �]} 
 2 ��	
3	45 = sup	{-�, �
| ∈ 	�[�, �]} 
 

Definition:  

 �	is Riemann Integrable on [�, �] or � ∈ ℜ[�, �] iff 2 ��	
3	45 = 2 ��	
3	456666666666666 
Riemann Integral of � is the common value denoted by 2 ��	
3		45  

 

Theorem: ∗ is a refinement of  

1.  -�, �
 ≤ -�∗, �
 
2.  #�∗, �
 ≤ #�, �
 

 

Theorem:  2 ��	
3	45 ≤ 2 ��	
3	456666666666666 
 

Theorem: � ∈ ℛ[�, �] iff  ∀; > 0	∃ ∈ �[�, �]; 	#�, �
 − -�, �
 < ; 

 

Theorem: If � ∈ ℛ[�, �] and  ∈ �[�, �] such that ?@ ∈ [	@&�, 	@] then 

 A∑ ��?@
∆	@ − 2 ��	
3	45�@'� A < #�, �
 − -�, �
 
 

Theorem: � ∈ B[�, �] ⇒ � ∈ ℛ[�, �]  
 

Theorems: �, D ∈ ℛ[�, �] 
1. � + D ∈ ℛ[�, �] and 2 ���	
 + D�	

3	 =45 2 ��	
3	 +45 2 D�	
3	45  

2. �D ∈ ℛ[�, �] 
3. |�| ∈ ℛ[�, �] and A2 �(	)3	4

5 A ≤ 2 |�(	)|3	4
5  

4. � ≤ D ⇒ 2 �(	)3	 ≤4
5 2 D(	)3	4

5  

5. � ≤ % ⇒ 2 �(	)3	 ≤4
5 %(� − �) 

6. F ∈ [�, �] ⇒ � ∈ ℛ[�, F], � ∈ ℛ[F, �]	and	 2 �(	)3	 =4
5 2 �(	)3	 +I

5 2 �(	)3	4
I  

 

Definition: ��	
 is Uniformly continuous on J ⊂ ℝ 

 ∀; > 0, ∃L > 0,∀	�, 	� ∈ J;	|	� − 	�| < L ⟹ |�(	�) − �(	�)| < ; 

 

Definition: ��	
 is Lipschitz continuous on J ⊂ ℝ 

 ∃- > 0, ∀	�, 	� ∈ J;	|�(	�) − �(	�)| ≤ -|	� − 	�|  
 

Theorem: Lipschitz continuous	⇒	Uniformly continuous ⇒ Continuous 
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Example: Show that 
�N is not uniformly continuous on �0,1] but 	� is. 

 

Theorem: Fundamental Theorem of Calculus 

If � ∈ ℛ[�, �] and there is a differentiable function O such that OP = � then 

 2 ��	
3	45 = O��
 − O��
 
 

Theorem: Second Fundamental Theorem of Calculus 

If � ∈ ℛ[�, �] and 	 ∈ [�, �] and O�	
 = 2 ��	
3	N5  then 

1. O is continuous on [�, �].  
2. If � is continuous at a point 	� ∈ [�, �] then O is differentiable at 	� and O′�	�
 = ��	�
. 

 

Theorem: Integration by Parts 

 O, R	differentiable	on	[�, �], OP = � ∈ ℛ[�, �]and	RP = � ∈ ℛ[�, �]	?ℎZ�  

 2 O�	
D�	
3	 = O��
R��
 − O��
R��
 − 2 ��	
R�	
3	4545  

 

Theorem: Change of Variable 

 D	has	continuous	derivative	DP^�	[F, 3]. �	is	continous	on	D�[F, 3]
and	let	O�	
 = 2 ��?
3?, 	 ∈ D�[F, 3]
. ThenNa�I
   

 for	each		 ∈ [F, 3], 2 �bD�?
cDP�?
3?	exixts	and	has	value	ObD�	
c.NI  

 

Theorem: Mean Value Theorem for Integrals 

 � ∈ ℛ[�, �]with	. ≤ � ≤ %. Then	∃	F ∈ [.,%]	such	that	 2 ��	
3	 = F�� − �
.45  

 If	also	� ∈ B[�, �]	then	∃		� ∈ ��, �
	such	that	 2 ��	
3	 = ��	�
�� − �
.45  

 

Definition: Improper Integrals of the first kind 

 Suppose2 ��	
3		exixts	for	each	� ≥ �.45  If	 lim4→j 2 ��	
3		exists	and	equal	to	J ∈ ℝ45 	we	say	that		 2 ��	
3		j5 converges	and	has	value	J 
 Otherwise	we	say	that		 2 ��	
3		j5 diverges 
 

Definition: Improper Integrals 

 2 ��	
3	 = lim4→j 2 ��	
3	45j5 , �: [�,∞
 → ℝ 

  2 ��	
3	 = lim5→&j 2 ��	
3	454&j , �: �−∞, �] → ℝ 

 2 ��	
3	 = 2 ��	
3	 +I&jj&j 2 ��	
3	,jI 	�: �−∞,∞
 → ℝ, F ∈ ℝ 

 2 ��	
3	 = limp→5q 2 ��	
3	, �: ��, �] → ℝ4p45q  

 2 ��	
3	 = limp→4r 2 ��	
3	p54r5 , �: [�, �
 → ℝ 

 2 ��	
3	 = 2 ��	
3	Ir545 + 2 ��	
3	4Iq , �: [�, F
 ∪ �F, �] → ℝ, F ∈ ��, �
 
 

Example: Find 2 �Ns 3	�&� 	if	it	exists 
 

Example: 

Prove that if � is bounded above and increasing, then limN→j ��	
 is existing and finite 

Prove that 2 |�(	)|3		j
5 converges ⟹ 2 �(	)3		j

5 converges 
Prove that if |�(	)| ≤ %Z5N, then the Laplace Transform of ��	
, ��t
 = 2 Z&uNj� ��	
3	 exists for all t > �. 

 

 Theorem: Comparison Test 

 Assume	that	the	proper	integral	 2 ��	
3		exists	for	each	� ≥ �	and	suppose	that	0 ≤ ��	
 ≤ D�	
45  

 for	all		 ≥ �, then 2 D�	
3		converges	 ⟹	2 ��	
3		converges		j5j5  

 

 Theorem: Limit Comparison Test 

  Assume	both	proper	integrals	 2 ��	
3		and	 2 D�	
3		exist	for	each	� ≥ �,where	��	
 ≥ 0	and	D�	
 > 0		4545  

  If	 limN→j w�N
a�N
 = c, then	 
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1.   c ≠ 0,∞ ⇒ 2 ��	
3		converges ⇔		2 D�	
3		converges		j5j5  

2.  c = 0	and	 2 D�	
3		converges	 ⇒ 	2 ��	
3		converges			j5j5  

3.  c = ∞	and	 2 D�	
3		diverges	 ⇒ 	2 ��	
3		diverges			j5j5  

 

Note: There are similar comparison tests for other improper integrals 

 

Example: Gamma Function is defined by Γ�	
 = 2 Z&p?N&�3?	j� .	Show that 

1. Γ�	
	exists	for	all		 > 0  

2. Γ�	
 = �	 − 1
Γ�	 − 1
 
3. Γ��
 = �� − 1
! for	integer	� ≥ 1  

4. we	can	use	2.		to	de}ine	Γ�	
	for		 < 0 

5. Γ�	
	does	not	exist	for			 = 0,−1,−2,−3,….  
6. Show	that	Γ ���� = √�  and 2 Z&ps3?j� = √�	 using Γ�	
Γ�1 − 	
 = �����N 

7. Use	the	formula	for	the	the	�	dimesional	ball		����
 = ��s���s��� ��	to	}ind	volumes	of	2,3,4,5	dimesional	balls  
8. Use	the	fact	that	Γ�	 + 1
~√2�	 �N��N asmptotically	as	? → ∞	to	}ind	10! approximately	 
9. What	is	−ΓP�1
? . It	is	called	the	Euler	Constant	�	and	no	one	knows	if	it	is	rational	or	irrational! 

Prove that the Beta function ��	, �
 = 2 ?N&��1 − ?
�&��� 3? exists for all 	, � > 0. It can be shown that ��	, �
 = ��N
���
��N��
 . 
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MULTIVARIATE CALCULUS 

Definition: Function of two variables �: � ⊆ ℝ� → ℝ 

 

Example: Draw the graphs of the following functions/surfaces 

1. ��	, �
 = 	� + �� 

2. ��	, �
 = �	� + �� 

3. 
Ns� + �s� − �s�  = 1 

 

Definition: Limit 

 lim�N,�
→�5,4
 ��	, �
 = - ⟺ ∀; > 0∃L > 0,0 < 3b�	, �
, ��, �
c < L ⇒ |��	, �
 − -| < ; 

 

Note: Matric 

 0 < 3b�	, �
, ��, �
c < L is a region around and excluding  ��, �
. Some options for the matric 3 are 

1. ��	 − �
� + �� − �
� 

2.   |	 − �| + |� − �| 
3. max�|	 − �|, |� − �|� 

We will use the first matric. One can show that they are equivalent, what is needed is a region around ��, �
. 
Example: Use the definition to show that  lim�N,�
→��,�
 	�� = 6  

 

Example: Investigate the existence of the limit, lim�N,�
→��,�
 ��	, �
 for the following functions 

  

1. ��	, �
 = £ N�Ns��s , �	, �
 ≠ �0,0
0 , �	, �
 = �0,0
¤ 
2. ��	, �
 = ¥ Ns�sNs�s��N&�
s , �	, �
 ≠ �0,0
0 , �	, �
 = �0,0
¤ 
3. ��	, �
 = ¥	sin �� , �	, �
 ≠ �0,0
0 , �	, �
 = �0,0
¤ 

 

Theorem:  

If lim�N,�
→�5,4
 ��	, �
 = -, limN→5 ��	, �
 and lim�→4 ��	, �
 exists then limN→5 lim¦→4 ��	, �
 = lim�→4 limN→5 ��	, �
 = -. 

 

Example:  

Use the above theorem to prove that lim�N,�
→��,�
 ��	, �
 is not existing for ��	, �
 = ¥Ns&�sNs��s , �	, �
 ≠ �0,0
0 , �	, �
 = �0,0
¤. 
Prove by definition that if lim�N,�
→��,�
 ��	, �
 along � = 	 and � = 2	 are different, then the limit is not existing. 

 

Definition: Continuity of � �� ∈ B
 at ��, �
 
 lim�N,�
→�5,4
 ��	, �
 = ���, �
 
 

Definition: Partial derivatives 

 �N��, �
 = ����, �
 = §w§N ��, �
 = limN→5 w�N,4
&w�5,4
N&5 = lim∆N→� w�5�∆N,4
&w�5,4
∆N  

 ����, �
 = ����, �
 = §w§� ��, �
 = lim�→4 w�5,�
&w�5,4
�&4 = lim∆�→� w�5,4�∆�
&w�5,4
∆�  

 

Definition: � ∈ B� ⇔ �N ∈ B	and	�� ∈ B	 
 

Theorem: Mean Value 

1.  �N and �� exists  

2. ¨ = ��	, �
|�	 − �
� + �� − �
� < L�} ⊂ � 

3. ∆	� + ∆�� < L� 

Then 

1. ��� + ∆	, � + ∆�
 − ���, �
 = ∆	�N�� + ©∆	, �
 + ∆����� + ∆	, � + ª∆�
 
2. 0 < ©, ª < 1 
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Definition: Differentiability of � �� ∈ «
 at ��, �
 
1.  �N and �� exists at ��, �
 
2. ��� + ∆	, � + ∆�
 − ���, �
 = ∆	�N��, �
 + ∆�����, �
 + ∆	¬�∆	, ∆�
 + ∆��∆	, ∆�
 for all ∆	� + ∆�� < L� 

3. lim�®N,®�
→��,�
¬�∆	, ∆�
 = lim�®N,®�
→��,�
�∆	, ∆�
 = 0 

 

Theorem:  � ∈ B� ⇒ � ∈ « ⇒ � ∈ B 

 

Example: Let ��	, �
 = D��	� + ���, D�	
 = 	sin �N , D�0
 = 0. Show that � ∈ « but � ∉ B� 

 

Definition: Higher order derivatives 

 �NN = ��N
N = §§N �§w§N� = §sw§Ns 
 �N� = ��N
� = §§� �§w§N� = §sw§�§N 

 ��N = b��cN = §§N �§w§�� = §sw§N§� 

 ��� = b��c� = §§� �§w§�� = §sw§�s and so on 

 

Note:  

1.  We write � ∈ B� to mean �NN, �N�, ��N , ��� ∈ B 

2. In a similar manner we write � ∈ B� to mean that all the � th order partial derivatives are continuous. There are 2� 

of them. 

3. There are ��.� =� °± = �!±!��&±
! , � th order partial derivatives that contains 	,. times. 

 

Example:  Let  

 ��	, �
 = ¥	� Ns&�sNs��s , �	, �
 ≠ �0,0
0 , �	, �
 = �0,0
¤. 
Show that �N��0,0
 ≠ ��N�0,0
. 
 

Theorem: � ∈ B� ⇒ �N� = ��N 

 

Example: If ² = ²�	, �
 ∈ B� then prove that the Laplace operator	∇�² = ´sµ´Ns + ´sµ´�s  becomes 

 ∇�² = ´sµ´¶s + �¶ ´µ´¶ + �¶s ´
sµ´·s	when 	 = �cos©, � = �sin©. 

 

Theorem: Chain rule 

1. � = ��	, �
, � = ��?
, 	 = 	�?
 all in B� . Then 

 
¸w¸p = §w§N ¸N¸p + §w§� ¸�¸p  

2. � = ��	, �
, � = ��², ¹
, 	 = 	�², ¹
 all in B� . Then 

 
§w§µ = §w§N §N§µ + §w§� §�§µ and 

§w§º = §w§N §N§º + §w§� §�§º 

 

Note: The above may be written as 

  
§w§p = �§w§N §w§��»

¸N¸p¸�¸p
¼ = §w§�N,�
 §�N,�
§p  and 

§w§�µ,º
 = �§w§N §w§��»
§N§µ §N§º§�§µ §�§º

¼ = §w§�N,�
 §�N,�
§�µ,º
 

 The determinant , det §�N,�
§�µ,º
 = ½
§N§µ §N§º§�§µ §�§º

½ is called the Jacobian or ¾ 
With 	 = �	�� and ² = �²¹� , the above may also be written as 

 b� ∘ 	cP�?
 = ��P ∘ 	
�?
	P�?
 and b� ∘ 	cPb²c = ��P ∘ 	
b²c	P�²
 
  

We also see that �§w§N §w§�� = §w§�N,�
 = �Pb	c	is acting as the true first derivative of � = ��	, �
. Therefore it is also called ∇� = grad� or the Gradient of �. 
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Example: Assume all functions are B� 

Show that if 	 = 	�², ¹
, � = ��², ¹
, ² = ²��, t
, ¹ = ¹��, t
 then 
§�N,�
§�¶,u
 = §�N,�
§�µ,º
 §�µ,º
§�¶,u
. 

Show that if ² = ��	, �
, ¹ = D�	, �
 then a functional relation of the form ℎ�², ¹
 = 0 exists iff det	 §�µ,º
§�N,�
 ≡ 0 . 

 

Definition: Directional Derivative of � in the direction of the unit vector ² = �², ¹
 at ��, �
. 
 Áµ���, �
 = lim∆p→� w�5�µ∆p,4�º∆p
&w�5,4
∆p  

 

Theorem: � ∈ B�, ∇���, �
 ≠ 0 

1. Áµ���, �
 = §w§N ��, �
² + §w§� ��, �
¹ = ∇���, �
 ∙ ² 

2. maxµ Áµ���, �
 = Á∇w�5,4
Ã ���, �
 = ‖∇���, �
‖ 

3. minµÁµ���, �
 = Á&∇w�5,4
Ã ���, �
 = −‖∇���, �
‖ 

 

Theorem: Normal vector to a surface at ��, �
 
 ���, �
 = ��N��, �
, �N��, �
,−1
 = �∇���, �
, −1
 
 

Proof:  Let � = ��?
 = b	�?
, ��?
, Å�?
c ∈ B� be a curve on the surface of Å = ��	, �
 ∈ B� 

 and ��?�
 = b	�?�
, ��?�
, Å�?�
c = ��, �, ���, �

.  
Note that �P�?�
 = b	P�?�
, �P�?�
, ÅP�?�
c is the tangent vector to the curve at ��, �
. 
Now  ���, �
 ∙ �P�?�
 = �N��, �
	P�?�
 + ����, �
�P�?�
 − ÅP�?�
 = ¸w¸p �?�
 − ÅP�?�
 = 0 

Ie ���, �
 = b�N��, �
, ����, �
, −1c = �∇���, �
,−1
 is a vector perpendicular to the surface Å = ��	, �
 at ��, �
. 
 

Theorem: Equation of the tangent plane to the surface Å = ��	, �
 ∈ B� at ��, �
. 
 Å = �N��, �
�	 − �
 + ����, �
�� − �
 = ∇���, �
 �	 − �� − �� = ∇���, �
 Æ�	�� − ����Ç 

 

Example: Let ��	, �
 = 	� + �� − 	� − �� + 1. At the point  �1,2
 find 

1. Direction in which the function increases most rapidly 

2. Directional derivative in that direction 

3. Equation of the tangent plane. 

 

Theorem:  Taylor’s expansion for one variable �: J ∈ ℝ → 	ℝ 

If � ∈ °��� and �, � + ℎ ∈ J  
then ��� + ℎ
 = ∑ ��! ¸

Èw¸NÈ ��
ℎ±�±'� + �����
! ¸
�qÉw¸N�qÉ �F
ℎ��� 

where F is between � and � + ℎ. 

 

Note: We can also write the above as  

If � ∈ B��� and � + ?ℎ ∈ J for all ? ∈ [0,1]  
Then ��� + ℎ
 = ∑ ��! �ℎ ¸̧N�± ���
�±'� + �����
! �ℎ ¸̧N���� ��F
 
for some F = � + ©ℎ with © ∈ �0,1
.  
We agree to use the notation �ℎ ¸̧N�± ���
 ≡ ℎ± ¸Èw¸NÈ ��
 
 

Note: The first two terms are the equation of the tangent line. 

 

Proof: Use generalized mean value theorem on  

 O�?
 = ∑ �±! ��±
�?
�	 − ?
±�±'�  and R�?
 = �	 − ?
��� 

 

Example: When � = 1 

 ��� + ℎ
 = ���
 + ��!�P��
ℎ + ��!�P′�F
ℎ� 

 

Example: Write the Taylor’s expansion for ��	
 = ZN at � = 0. 

 

Example: Derive the second derivative test to find the extrema of ��	
. What to do when �P′��
 = 0? 
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Theorem:  Taylor’s for two variables �: � ⊂ ℝ� → 	ℝ 

 � ∈ B��� and �� + ?ℎ, � + ?Ê
 ∈ � for all ? ∈ [0,1]  
Then ��� + ℎ, � + Ê
 = ∑ ��! �ℎ §§N + Ê §§��±�±'� ���, �
 + ��±��
! �ℎ §§N + Ê §§��±�� ��Ë
 
for some Ë = �� + ©ℎ, � + ©Ê
 with © ∈ �0,1
. 
 

Proof: Use Taylor’r expansion for O�?
 = ��� + ?ℎ, � + ?Ê
 
 

Example: When � = 1 

 ��� + ℎ, � + Ê
 
 = ∑ ��! �ℎ §§N + Ê §§��±�±'� ���, �
 + �����
! �ℎ §§N + Ê §§����� ��� + ©ℎ, � + ©Ê
 
 = ���, �
 + ��! �ℎ §§N + Ê §§�� ���, �
 + ��! �ℎ §§N + Ê §§��� ��Ë
 
 = ���, �
 + ��! �ℎ §§N + Ê §§�� ���, �
 + ��! �ℎ� §s§Ns + 2ℎÊ §s§N§� + ℎ� §s§�s� ��Ë
 
 = ���, �
 + �N��, �
ℎ + ����, �
Ê + ��! b�NN�Ë
ℎ� + 2�N��Ë
ℎÊ + ����Ë
Ê�c 
 = ���, �
 + ��N��, �
 ����, �

 �ℎÊ� + ��! �ℎ Ê
Æ�NN�Ë
 �N��Ë
��N�Ë
 ����Ë
Ç �ℎÊ� 

 = ���, �
 + ∇���, �
 �ℎÊ� + ��! �ℎ Ê
Ì��Ë
 �ℎÊ� 

 = ���, �
 + ��!�′��, �
 �ℎÊ� + ��! �ℎ Ê
�′′�Ë
 �ℎÊ� 

 

Note: The first two terms are the equation of the tangent plane. 

 

Definition: �PP = Ì� = Æ�NN �N���N ���Ç: Hessian of � 

 detÌ� = �NN��� − �N��: determinant 

 trÌ� = �NN + ���: trace 

 

Note: detÌ� > 0	and	�NN > 0�< 0
 ⟹ ��� > 0�< 0
 ⟹ trÌ� > 0�< 0
	  
 

Example:  

Write the Taylor’s expansion for ��	, �
 = ZN� and ��	, �
 = sin	�sin	 + 	Z�
	at ��, �
 = �0,0
. 
Get the same answer by applying multiple one variable Taylor series expansions at 0.  

 

Definition: ��, �
 is a critical point of � ∈ B�⟺ ∇���, �
 = Í or � is not defined 

 

Definition:  

1. � has a relative maximum at ��, �
 ⇔ ���, �
 ≥ ��� + ℎ, � + Ê
 in a neighbourhood of  ��, �
 
2. � has a relative minimum at ��, �
 ⇔ ���, �
 ≤ ��� + ℎ, � + Ê
 in a neighbourhood of  ��, �
 
3. � has a saddle point at ��, �
 ⇔ � is both above and below its tangent plane at ��, �
. 

 

Theorem: � ∈ °�and ��, �
 is a relative maximum/minimum/saddle point of � ⇒ ∇���, �
 = Í  

 

Theorem: � ∈ °� and ∇���, �
 = Í then 

1. detÌ���, �
 > 0 and trÌ���, �
 > 0 then ��, �
 is a relative mimimum 

2. detÌ���, �
 > 0 and trÌ���, �
 < 0 then ��, �
 is a relative maximum 

3. detÌ���, �
 < 0 then ��, �
 is a saddle point 

4. detÌ���, �
 = 0 inconclusive(why?) 

 

Example: Find the critical points and determine the nature of them ( relative maxima/minima/saddle points). 

 ��	, �
 = 	Î − 12	 + �Î − 27� + 5 

 ��	, �
 = 	� + �� − 	� − �� + 1 

 ��	, �
 = 	� + �� 

 

Example: Propose a method to determine the nature of critical points when detÌ� = 0. 
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Theorem: Lagrange Multipliers 

If �, D ∈ B� and ∇D ≠ Í then the maxima/minima of ��	, �
 subjected to D�	, �
 = 0 are included in the set of solutions 

of ∇��	, �
 = Ð∇D�	, �
 and D�	, �
 = 0. 

 

Example:  

Find the shortest distance from the point �1,0
 to the parabola �� = 4	. 

Find the directions of the axes of the ellipse 5	� − 6	� + 5�� − 4	 − 4� − 4 = 0. 

Find the absolute maximum/minimum of  ��	, �
 = 	� + �� − 	� − �� + 1 on the closed disk  �	 − 1
� + �� ≤ 4. 
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ORDINARY DIFFERENTIAL EQUATIONS 

Definition: 1st Order Ordinary Differential Equation 

 
¸�¸N = ��	, �
 

 

Definition/Theorem: Variable separable 1
st

 order ODE 

 ��	, �
 = a�N
Ñ��
 
 2ℎ��
3� = 2D�	
3	 

   

Definition/Theorem: Homogeneous 1
st

 order ODE 

  ��	, �	
 = D��
 
 
¸�¸N = � + 	 ¸Ò¸N = D��
 ⇒ ¸Ò¸N = a�Ò
&ÒN : varaibale	separable 

 

Definition/Theorem: Linear 1
st

 order ODE 

  ��	, �
 = Ó�	
 − �	
� 

 Integrating Factor: J�	
 = Z2Ô�N
¸N 

 
¸�¸N + �	
� = Ó�	
 ⇒ J�	
 ¸�¸N + J�	
�	
� = Ó�	
J�	
 

 ⇒ ¸̧N �J�	
�
 = J�	
Ó�	
 ⇒ � = �Õ�N
2 J�	
Ó�	
3	 

 

Definition/Theorem: Bernoulli 1
st

 order ODE 

 ��	, �
 = Ó�	
�� − �	
� 

 Å = ��&� ⇒ ¸�¸N = �1 − �
�&� ⇒ ¸�¸N + �1 − �
�	
Å = �1 − �
Ó�	
: Linear 
 

Example: Solve the first order ODEs ¸�¸N = �ZN, 
¸�¸N = Ns��sN� , 

¸�¸N − �N = ln	 

 

Definition/Theorem: Exact ODE %�	, �
 + ×�	, �
 ¸�¸N = 0 with 
§Ø§� = §Ù§N .  

%,× ∈ B�⟹ ∃� such that 
§w§N = % and 

§w§� = ×. 

So  
¸w¸N = §w§N + §w§� ¸�¸N = 0 or � = F is the solution 

 

Definition/Theorem: Reducible to Exact ODE 

Let %�	, �
 + ×�	, �
 ¸�¸N = 0 with  
§Ø§� ≠ §Ù§N . 

If �§Ø§� − §Ù§N� /× = D�	
 is a function of 		alone, define  J�	
 = exp	�2D�	
3	
 . 
With  J�	
%�	, �
 + J�	
×�	, �
 ¸�¸N = 0 we have 

§ÙÕ§N = J §Ù§N +×JD�	
 = J §Ø§� = §ØÕ§�  so new ODE is exact. 

 If �§Ù§N − §Ø§�� /% = ℎ��
 is a function of �	alone, define  ¾��
 = exp	�2 ℎ��
3�
 . 
With ¾��
%�	, �
 + ¾��
×�	, �
 ¸�¸N = 0 we have 

§ØÛ§� = ¾ §Ø§� +%¾ℎ��
 = ¾ §Ù§N = §ÙÛ§N  so new ODE is exact. 

 

Example: Solve �3	� + 6	��
 + �6	�� + 4�Î
 ¸�¸N = 0, �	Î + �Î
 − 	�� ¸�¸N = 0 , � − �2	 + �
 ¸�¸N = 0. 

 

Theorem: Cauchy-Peano 

Let  �:		Ü ⊂ ℝ� → ℝ  be continuous.  

Then the initial value problem 
¸�¸N = ��	, �
, ��	�
 = ��	has a solution in Ü in a neighborhood of �	�, ��
. 

 

Theorem: Picard -Lindelof 

Let  �:		Ü ⊂ ℝ� → ℝ  be continuous. Also let � be Lipschitz continuous(ℒB) in � uniformly in 	. 

Then the initial value problem 
¸�¸N = ��	, �
, ��	�
 = ��	has a unique solution in Ü in a neighborhood of �	�, ��
. 

 

Question: Investigate the nature of solutions of 
¸�¸N = Î���/Î, ��0
 = 0 according to the above theorems. 

Theorem:  � ∈ « ⇒ ��′ ∈ ℬ ⇔ � ∈ ℒB
 , ℬ: Bounded 



MA1023-Methods of Mathematics-14S2-www.math.mrt.ac.lk/UCJ-20151221-Page 10 of 11 

 

Definition: nth Order Ordinary Differential Equation 

 O �¸��¸N� , ¸�rÉ�¸N�rÉ , ⋯ , ¸�¸N , �, 	� = 0 

 

Definition: 2 nd Order Ordinary Differential Equation 

 
¸s�¸Ns = � �	, �, ¸�¸N� 

 

Definition: 2nd Order Linear Ordinary Differential Equation 

 
¸s�¸Ns + à�	
 ¸�¸N + á�	
� = ��	
 

 

Definition: 2nd Order Linear Ordinary Differential Equation with constant coefficients 

 
¸s�¸Ns + à ¸�¸N + á� = ��	
 

 If	ª� + àª + á = �ª − �
�ª − �
 = ª�ª − �
 − ��ª − �
 = ª�ª − �
 − ��ª − �
 
 
¸s�¸Ns + à ¸�¸N + á� = ¸̧N �¸�¸N − ��� − � �¸�¸N − ��� = ¸�¸N − �Å = ��	
	and	 ¸�¸N − �� = Å: Linear	1st	ordere	ODEs 

 

Example: Solve 
¸s�¸Ns − 5 ¸�¸N + 6� = sin	 as two Linear 1

st
 order ODEs 

 

Definition/Theorem:  

 	� ¸s�¸Ns + 	à ¸�¸N + á� = ��	
 
 	 = Z� ⇒ 	 ¸�¸N = ¸�¸� ⇒ 	 ¸s�¸Ns + ¸�¸N = ¸s�¸�s �N ⇒ 	� ¸s�¸Ns = ¸s�¸�s − ¸�¸� 

  
¸s�¸�s − ¸�¸N + à ¸�¸� + á� = ��Z�
 ⇒ ¸s�¸�s + �à − 1
 ¸�¸� + á� = ��Z�
: 2nd	Order	Linear 

 

Definition: The solutions to   
¸s�¸Ns + à ¸�¸N + á� = 0 (homogeneous equation)can be obtained by substituting  

 � = FZãN ⇒ 	ª� + àª + á = �ª − �
�ª − �
 = 0, äåæçæèéêçëèéëä	êìíæéëîï  

1. �, � ∈ ℝ, � ≠ � ⇒ � = FZ5N + 3Z4N 

2. �, � ∈ ℝ, � = � ⇒ � = FZ5N + 3	Z4N 

3. �, � ∈ ℂ ⇒ � = �� + ñ�� = �6 ⇒ � = FZ5ÉNsin��	 + FZ5ÉNcos��	 

 

 Definition/Theorem: The solutions to 
¸s�¸Ns + à�	
 ¸�¸N + á�	
� = ��	
, ��	�
 = ��, �P�	�
 = �′�  

1. Exists and unique on an interval �F, 3
 where 	� ∈ �F, 3
 ⊆ ��, �
 and à�	
, á�	
, ��	
 continuous on ��, �
. 
2. The solution can be expressed as � = �I + �ò 

3. �I = �²�	
 + �¹�	
 (complimentary/fundamental solution) is the solution when ��	
 ≡ 0 (homogeneous 

equation)and ², ¹ (fundamental set of solutions)are linearly independent ∀��, �
[∀	��²�	
 + �¹�	
 = 0
 ⇒ ��, �
 = �0,0
]. 
4. �ò (particular solution) is a solution when ��	
 ≢ 0. 

 

Example: Solve  
¸s�¸Ns − 5 ¸�¸N + 6� = sin	 by separately finding �I and �ò 

 

Definition: Wronskian 

 ô�², ¹
�	
 = ²¹P − ¹²P = A² ¹²′ ¹′A 
 

Theorem: If ², ¹	are solutions to the homogeneous equation, the Wronskian satisfies 

1.  ôP + à�	
ô = 0  

2. ô�², ¹
�	
 = Fexp�−2à�	
3	
 = ô�², ¹
�	�
exp �−2 à�?
3?NNõ � 

3. ∀	,ô�², ¹
�	
 ≠ 0 or ∀	,ô�², ¹
�	
 = 0 

4. ∃	,ô�², ¹
�	
 ≠ 0 ⇔ ², ¹ are linearly independent 

 

Example: If Z5N is a solution to 
¸s�¸Ns − 2� ¸�¸N + ��� = 0 find the other independent solution. 

 

 Theorem: If ², ¹	are fundamental solutions to the homogeneous equation,  

 then the particular solution is given by 

 �ò�	
 = F�	
²�	
 + 3�	
¹�	
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  �² ¹²′ ¹′� �F′3′� = �0��;  FP = &¶ºö = öÉö ,ô� = A0 ¹� ¹′A; 3P = ¶µö = ösö ,ô� = A² 0²′ �A  
  �ò�	
 = 2 º�N
µ�p
&µ�N
º�p
ö�µ,º
�p
NNõ ��?
3? 
 

Example: Solve  
¸s�¸Ns − 5 ¸�¸N + 6� = sin	 using the Wronskian. 

 

Definition: Legendre ODE: �1 − 	�
 ¸s�¸Ns − 2	 ¸�¸N + ��� + 1
� = 0, � is an integer. The fundamental solutions are 

1. Legendre polynomials given by ��	
 = ¸�¸N� [�	� − 1
�] : bounded solution as 	 → ±1. 

2. Legendre functions of the second kind Ó��	
: unbounded solution as 	 → ±1. 

 

Example: Let � = 1. Show that ��	
 = 	 and find Ó��	
. Hence solve the ODE with RHS=	 and ��0
 = 0, �′�0
 = 1. 

 

Definition: Laguerre ODE: 	 ¸s�¸Ns + �1 − 	
 ¸�¸N + �� = 0, � is an integer. The fundamental solutions are 

1. Laguerre polynomials given by -��	
 = �ø�! ¸
�

¸N� [Z&N	�] : bounded solution as 	 → 0. 

2. Laguerre functions of the second kind %��	
: unbounded solution as 	 → 0. 

 

Example: Let � = 1. Show that -��	
 = 1 − 	 and find %��	
. Hence solve the ODE with RHS=	 and 

 ��1
 = 0, �′�1
 = 1. 

 

Definition: Bessel Equation: 	� ¸s�¸Ns + 	 ¸�¸N + �	� − ��
� = 0, � is an integer. The fundamental solutions are 

1. Bessel function of the first kind J��	
: bounded solution at 	 = 0 

2. Bessel function of the second kind K��	
: unbounded solution at 	 = 0 

 

Definition: Airy Equation: 
¸s�¸Ns − 	� = 0.  The fundamental solutions are 

1. Airy function of the first kind Ai�	
 = �� 2 cos �pûÎ + 	?�3?∞�  : bounded solution as 	 → ∞ 

2. Airy function of the second kind Bi�	
: unbounded solution as 	 → ∞ 

 


